TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>LITERATURE SURVEY</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>OBJECTIVES OF THE THESIS</td>
<td>18</td>
</tr>
<tr>
<td>1.4</td>
<td>ORGANISATION OF THE THESIS</td>
<td>18</td>
</tr>
<tr>
<td>1.5</td>
<td>CONCLUSION</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>PULSE WIDTH MODULATED AC CHOPPER</td>
<td>20</td>
</tr>
<tr>
<td>2.1</td>
<td>GENERAL</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>PHASE CONTROLLED AC CHOPPER</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>PULSE WIDTH MODULATION CONTROL</td>
<td>27</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Single Pulse Width Modulation</td>
<td>27</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Multiple Pulse Width Modulation</td>
<td>28</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Sinusoidal Pulse Width Modulation</td>
<td>28</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Modified Sinusoidal Pulse Width Modulation</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>PULSE WIDTH MODULATED AC CHOPPER</td>
<td>28</td>
</tr>
</tbody>
</table>
CHAPTER NO. | TITLE | PAGE NO.
---|---|---
2.4.1 | Pulse Width Modulated AC Chopper with Two Switches | 29
2.4.2 | Pulse Width Modulated AC Chopper with Three Switches | 34
2.4.3 | Pulse Width Modulated AC Chopper with Four Switches | 40
2.4.4 | Comparison of three configurations of Pulse Width Modulated AC Chopper System | 45
2.5 | CONCLUSION | 48

3 | MODELING OF SINGLE PHASE INDUCTION MOTOR | 51
3.1 | GENERAL | 51
3.2 | THEORIES BEHIND THE OPERATION OF SINGLE PHASE INDUCTION MOTOR | 51
3.3 | TESTS CONDUCTED ON INDUCTION MOTOR | 54
3.3.1 | No-load Test | 54
3.3.2 | Blocked Rotor Test | 55
3.3.3 | Retardation Test | 56
3.4 | MODEL OF SINGLE PHASE INDUCTION MOTOR BASED ON DOUBLE FIELD REVOLVING THEORY | 57
3.4.1 | Model of Forward Field | 58
3.4.2 | Model of Backward Field | 59
3.5 | CONCLUSION | 62
CHAPTER NO.	TITLE	PAGE NO.
4	NEURAL NETWORK BASED SPEED CONTROL OF SINGLE PHASE INDUCTION MOTOR	63
4.1 GENERAL	63	
4.2 TESTS MADE ON THE INDUCTION MOTOR	63	
4.3 PULSE WIDTH MODULATED VOLTAGE GENERATION	64	
4.4 OPEN LOOP SPEED CONTROL OF THE SINGLE PHASE INDUCTION MOTOR	65	
4.5 CLOSED LOOP SPEED CONTROL OF THE SINGLE PHASE INDUCTION MOTOR USING THE PI CONTROLLER	70	
4.6 MODELING OF NON-LINEAR LOAD	74	
4.7 CLOSED LOOP SPEED CONTROL OF THE SINGLE PHASE INDUCTION MOTOR USING THE PI CONTROLLER FOR NON-LINEAR LOAD	75	
4.8 ARTIFICIAL NEURAL NETWORK	77	
 | 4.8.1 Characteristics of Neural Networks | 77
 | 4.8.2 Perceptron | 78
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>ARCHITECTURE OF NEURAL NETWORKS</td>
<td>79</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Feed-forward Networks</td>
<td>79</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Feedback Networks</td>
<td>80</td>
</tr>
<tr>
<td>4.10</td>
<td>NETWORK LAYERS</td>
<td>80</td>
</tr>
<tr>
<td>4.11</td>
<td>TRANSFER FUNCTION</td>
<td>81</td>
</tr>
<tr>
<td>4.12</td>
<td>BACKPROPAGATION ALGORITHM</td>
<td>81</td>
</tr>
<tr>
<td>4.13</td>
<td>TRAINING OF ARTIFICIAL NEURAL NETWORKS</td>
<td>87</td>
</tr>
<tr>
<td>4.14</td>
<td>NEURAL NETWORK TRAINING CIRCUIT</td>
<td>88</td>
</tr>
<tr>
<td>4.15</td>
<td>CLOSED LOOP SPEED CONTROL OF THE SINGLE PHASE INDUCTION MOTOR USING THE NEURAL NETWORK</td>
<td>91</td>
</tr>
<tr>
<td>4.16</td>
<td>STABILITY ANALYSIS</td>
<td>94</td>
</tr>
<tr>
<td>4.17</td>
<td>CONCLUSION</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>NEURAL NETWORK BASED ENERGY SAVER</td>
<td>99</td>
</tr>
<tr>
<td>5.1</td>
<td>GENERAL</td>
<td>99</td>
</tr>
<tr>
<td>5.2</td>
<td>CLASSIFICATION OF INDUCTION MOTOR DRIVE SYSTEMS</td>
<td>101</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Variable Speed Drives</td>
<td>101</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Constant Speed Drives</td>
<td>101</td>
</tr>
<tr>
<td>5.3</td>
<td>ENERGY CONSERVATION METHODS IN THE INDUCTION MOTOR</td>
<td>102</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Power Electronic Soft Starter</td>
<td>103</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Autotransformer</td>
<td>103</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>5.3.3 Star-Delta and a Reverse Switching Device</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>5.3.4 Voltage Controllers</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>5.4 PRINCIPLE OF OPERATION</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>5.5 SIMULINK MODEL OF SINGLE PHASE INDUCTION MOTOR FOR ENERGY SAVER APPLICATION</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>5.6 PERFORMANCE CHARACTERISTICS OF SINGLE PHASE INDUCTION MOTOR AT NO-LOAD</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>5.7 NEURAL NETWORK TRAINING CIRCUIT</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>5.8 CLOSED LOOP STATOR VOLTAGE CONTROLLED SINGLE PHASE INDUCTION MOTOR</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>5.9 CONCLUSION</td>
<td>121</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>HARDWARE IMPLEMENTATION</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.1 GENERAL</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>6.2 HARDWARE DESCRIPTION</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>6.3 POWER SUPPLY UNIT</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>6.3.1 Transformer</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>6.3.2 Bridge Rectifier</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>6.3.3 Filter</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>6.3.4 Voltage Regulator</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>6.4 ZERO CROSSING DETECTOR</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>6.5 MICROCONTROLLER BASED PULSE GENERATING UNIT</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>6.6 DRIVER CIRCUIT</td>
<td>133</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>6.7</td>
<td>POWER CIRCUIT OF AC CHOPPER</td>
<td>134</td>
</tr>
<tr>
<td>6.8</td>
<td>EXPERIMENTAL VERIFICATION</td>
<td>136</td>
</tr>
<tr>
<td>6.9</td>
<td>CONCLUSION</td>
<td>141</td>
</tr>
<tr>
<td>7</td>
<td>CONCLUSION</td>
<td>142</td>
</tr>
<tr>
<td>7.1</td>
<td>CONCLUSION</td>
<td>142</td>
</tr>
<tr>
<td>7.2</td>
<td>SCOPE FOR FURTHER WORK</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>LIST OF PUBLICATIONS</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>VITAE</td>
<td>155</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>2.1</td>
<td>Summary of THD for output voltage of Phase controlled AC chopper</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of THD for output current of Phase controlled AC chopper</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary of THD for output voltage of PWMC with two switches</td>
<td>33</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary of THD for output current of PWMC with two switches</td>
<td>33</td>
</tr>
<tr>
<td>2.5</td>
<td>Switching sequence of driving signal for three switches</td>
<td>35</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary of THD for output voltage of PWMC with three switches</td>
<td>40</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary of THD for output current of PWMC with three switches</td>
<td>40</td>
</tr>
<tr>
<td>2.8</td>
<td>Summary of THD for output voltage of PWMC with four switches</td>
<td>45</td>
</tr>
<tr>
<td>2.9</td>
<td>Summary of THD for output current of PWMC with four switches</td>
<td>45</td>
</tr>
<tr>
<td>2.10</td>
<td>Comparison of three configurations of pulse width modulated AC chopper system</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Single phase induction motor parameters</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Speed response for maximum and minimum torque in open loop speed control</td>
<td>68</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of response with neural network and PI controllers</td>
<td>94</td>
</tr>
<tr>
<td>5.1</td>
<td>Parameters of single phase induction motor</td>
<td>109</td>
</tr>
<tr>
<td>5.2</td>
<td>Energysaving during various load conditions</td>
<td>122</td>
</tr>
<tr>
<td>6.1</td>
<td>Switching sequence of driving signal</td>
<td>135</td>
</tr>
<tr>
<td>6.2</td>
<td>Experimental values at no-load and partial load</td>
<td>137</td>
</tr>
<tr>
<td>6.3</td>
<td>Comparison of saving in energy</td>
<td>141</td>
</tr>
<tr>
<td>7.1</td>
<td>Comparison of response with neural network and PI controllers</td>
<td>145</td>
</tr>
<tr>
<td>7.2</td>
<td>Energysaving during various load conditions</td>
<td>146</td>
</tr>
<tr>
<td>7.3</td>
<td>Comparison of saving in energy</td>
<td>146</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>2.1</td>
<td>Circuit diagram of phase controlled AC chopper</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Simulink representation of phase controlled AC chopper</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>FFT analysis of PACC with single phase induction motor load for a delay of 2 ms</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Harmonic analysis of Phase controlled AC chopper output</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Circuit diagram of a pulse width modulated AC chopper with two switches</td>
<td>29</td>
</tr>
<tr>
<td>2.6</td>
<td>Equivalent circuit for active mode operation during positive half cycle</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>Equivalent circuit for freewheeling mode operation during positive half cycle</td>
<td>30</td>
</tr>
<tr>
<td>2.8</td>
<td>Equivalent circuit for active mode operation during negative half cycle</td>
<td>31</td>
</tr>
<tr>
<td>2.9</td>
<td>Equivalent circuit for freewheeling mode operation during negative half cycle</td>
<td>31</td>
</tr>
<tr>
<td>2.10</td>
<td>Simulink representation of pulse width modulated AC chopper with two switches</td>
<td>32</td>
</tr>
<tr>
<td>2.11</td>
<td>Power Circuit diagram of a pulse width modulated AC chopper with three switches</td>
<td>34</td>
</tr>
<tr>
<td>2.12</td>
<td>Control scheme of a pulse width modulated AC chopper with three switches</td>
<td>37</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>2.13</td>
<td>Simulink representation of pulse width modulated AC chopper with three switches</td>
<td>38</td>
</tr>
<tr>
<td>2.14</td>
<td>Driving signals for the switches S_3, S_4 and S_5</td>
<td>39</td>
</tr>
<tr>
<td>2.15</td>
<td>Power circuit diagram of a pulse width modulated AC chopper with four switches</td>
<td>41</td>
</tr>
<tr>
<td>2.16</td>
<td>Equivalent circuit for active mode</td>
<td>42</td>
</tr>
<tr>
<td>2.17</td>
<td>Equivalent circuit for freewheeling mode</td>
<td>42</td>
</tr>
<tr>
<td>2.18</td>
<td>Equivalent circuit for dead time mode</td>
<td>43</td>
</tr>
<tr>
<td>2.19</td>
<td>Simulink representation of pulse width modulated AC chopper with four switches</td>
<td>44</td>
</tr>
<tr>
<td>2.20</td>
<td>Harmonic analysis of pulse width modulated AC chopper with two switch configuration</td>
<td>47</td>
</tr>
<tr>
<td>2.21</td>
<td>Comparison of pulse width modulated and phase controlled AC chopper systems</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>Positions of pulsating and rotating fluxes with change in angle (θ)</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>Pulsating flux as a function of space angle (Θ)</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Speed torque characteristics of induction motor</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>Equivalent circuit of single phase induction motor based on double field revolving theory</td>
<td>53</td>
</tr>
<tr>
<td>3.5</td>
<td>Equivalent circuit of single phase induction motor in S domain</td>
<td>57</td>
</tr>
<tr>
<td>3.6</td>
<td>Generalized simulink model of single phase induction motor</td>
<td>61</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.1</td>
<td>Simulink model for pulse width modulated voltage generation</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>PWM output voltage</td>
<td>65</td>
</tr>
<tr>
<td>4.3</td>
<td>Simulink model of single phase induction motor</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>Open loop speed response of the single phase induction motor</td>
<td>69</td>
</tr>
<tr>
<td>4.5</td>
<td>Closed loop model of the speed control of single phase induction motor using the PI controller</td>
<td>71</td>
</tr>
<tr>
<td>4.6</td>
<td>Closed loop speed response of the single phase induction motor using the PI controller</td>
<td>73</td>
</tr>
<tr>
<td>4.7</td>
<td>Simulink model of non-linear load</td>
<td>74</td>
</tr>
<tr>
<td>4.8</td>
<td>Variation in the torque of non-linear load</td>
<td>75</td>
</tr>
<tr>
<td>4.9</td>
<td>Closed loop model of speed control of the single Phase induction motor with variable load using the PI controller</td>
<td>76</td>
</tr>
<tr>
<td>4.10</td>
<td>closed loop speed response of the single phase induction motor using the PI controller with variable load</td>
<td>77</td>
</tr>
<tr>
<td>4.11</td>
<td>An artificial neuron (Perceptron)</td>
<td>78</td>
</tr>
<tr>
<td>4.12</td>
<td>Feed-forward network</td>
<td>79</td>
</tr>
<tr>
<td>4.13</td>
<td>Flowchart for error backpropagation algorithm</td>
<td>86</td>
</tr>
<tr>
<td>4.14</td>
<td>Training of artificial neural networks (Supervised learning)</td>
<td>87</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.15</td>
<td>Neural network training circuit</td>
<td>89</td>
</tr>
<tr>
<td>4.16</td>
<td>Closed loop model of the speed control of single phase induction motor using neural networks</td>
<td>92</td>
</tr>
<tr>
<td>4.17</td>
<td>Closed loop speed response of single phase induction motor using neural networks</td>
<td>93</td>
</tr>
<tr>
<td>4.18</td>
<td>Range of PI parameters for the stable operation of the closed loop system</td>
<td>97</td>
</tr>
<tr>
<td>5.1</td>
<td>Classification of energy saving schemes for induction motor drive systems</td>
<td>102</td>
</tr>
<tr>
<td>5.2</td>
<td>Block diagram of neural-network-based PWM AC chopper fed single phase induction motor</td>
<td>105</td>
</tr>
<tr>
<td>5.3</td>
<td>Simulink model of single phase induction motor for energy saving application</td>
<td>108</td>
</tr>
<tr>
<td>5.4</td>
<td>Simulink model of single phase induction motor at no-load</td>
<td>111</td>
</tr>
<tr>
<td>5.5</td>
<td>Performance characteristics of PWM AC chopper fed induction motor at various voltage steps during no-load operation</td>
<td>113</td>
</tr>
<tr>
<td>5.6</td>
<td>Neural network training circuit for energy saver</td>
<td>116</td>
</tr>
<tr>
<td>5.7</td>
<td>Model of the neural network controlled pulse width modulated AC chopper fed single phase induction motor</td>
<td>119</td>
</tr>
<tr>
<td>5.8</td>
<td>Variation in load torque</td>
<td>120</td>
</tr>
<tr>
<td>5.9</td>
<td>Variation in duty ratio</td>
<td>120</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>5.10</td>
<td>Loss in various load conditions</td>
<td>121</td>
</tr>
<tr>
<td>6.1</td>
<td>ZCD power supply unit</td>
<td>124</td>
</tr>
<tr>
<td>6.2</td>
<td>Power supply unit</td>
<td>125</td>
</tr>
<tr>
<td>6.3</td>
<td>Zero crossing detector circuit</td>
<td>128</td>
</tr>
<tr>
<td>6.4</td>
<td>Microcontroller based pulse generating unit</td>
<td>132</td>
</tr>
<tr>
<td>6.5</td>
<td>Driver circuit</td>
<td>133</td>
</tr>
<tr>
<td>6.6</td>
<td>Pulse width modulated AC chopper circuit</td>
<td>135</td>
</tr>
<tr>
<td>6.7</td>
<td>Experimental setup</td>
<td>136</td>
</tr>
<tr>
<td>6.8</td>
<td>The hardware circuit of PWM AC chopper fed drive</td>
<td>138</td>
</tr>
<tr>
<td>6.9</td>
<td>Flowchart for the generation of control pulses</td>
<td>139</td>
</tr>
<tr>
<td>6.10</td>
<td>Experimental results</td>
<td>140</td>
</tr>
<tr>
<td>7.1</td>
<td>Comprison of pulse width modulated and phase controlled AC chopper systems</td>
<td>144</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOLS

P_{gb} - Airgap power developed due to the backward field

P_{gf} - Airgap power developed due to the forward field

ω - Angular speed

W_2 - Auxiliary winding

Φ_b - Backward flux

s_b - Backward slip

ω_b - Base speed

e - Battery voltage, Back emf

I_{sc} - Blocked rotor current

Φ_{sc} - Blocked rotor phase angle

W_{sc} - Blocked rotor power

V_{sc} - Blocked rotor voltage

X_C - Capacitive reactance

a_{11}, a_{12}, a_{13}, a_{21} - Constants

a_{22}, a_{23}, a_{31}, a_{32},

a_{33}, a_{41}, a_{42}, b_1, b_2,

b_d - Core loss component of currents

d - Desired output

d - Desired output vector of a trained network

D_6, D_7, D_8, D_9 - Diodes

I_{dr} - Direct axis component of rotor current

I_{ds} - Direct axis component of stator current

k - Duty-Ratio
Z_{eq} - Equivalent impedance
X_{eq} - Equivalent reactance
R_{eq} - Equivalent resistance
R_0, R_4 - Equivalent resistances corresponding to the iron loss
E - Error
δ_0, δ_k - Error signal vectors
β - Extinction angle
I_{05} - Fifth harmonic component of output current
V_{05} - Fifth harmonic component of output voltage
α - Firing angle
Φ - Flux
Φ_f - Forward flux
s_f - Forward slip
I_{01} - Fundamental component of output current
V_{01} - Fundamental component of output voltage
g - Gate terminal
L - Inductance
X_L - Inductive reactance
u - Input function
z - Input vector for multilayer network
V_i - Input voltage
IN_1, IN_2, IN_3, IN_4 - Inputs
K_i - Integral gain constant
I_1, I_3 - Iron-loss and magnetizing components of the no-load current
L_3 - Leakage inductance of rotor referred to the stator
L_1 - Leakage inductance of the stator
X_2 - Leakage inductive reactance of the rotor referred to the stator
X_1 - Leakage inductive reactance of the stator

η - Learning coefficient

I_L - Load Current

T_L - Load torque

I_{1m}, I_{3m} - Magnetizing component of currents

L_4 - Magnetizing inductance of the stator

X_0 - Magnetizing inductive reactance of the stator

W_1 - Main winding

E_{max} - Maximum Error

Φ_m - Maximum flux

M - Modulation index

J - Moment of inertia

i_m - Motor current

I_0 - No load current

Φ_0 - No load phase angle

W_o - No load power

V_o - No load voltage

ξ - Number of different patterns types

U - Number of elements in the learning set

H - Number of hidden neurons

I - Number of input neurons

K - Number of output neurons

A - Number of patterns of type 1

p - Number of pulses per half cycle

Q - Number of separable regions in the input space

r - Number of training patterns

T_{off} - Off time

T_{on} - On time

Out - Output
\(y, f(u) \) - Output function
\(Y \) - Output vector of the hidden layer
\(O \) - Output vector of the output layer
\(V_0 \) - Output voltage
\(V_b \) - Output voltage due to backward field
\(V_f \) - Output voltage due to forward field
\(M_p \) - Peak overshoot
\(\varnothing \) - Phase
\(P \) - Poles
\(K_p \) - Proportional gain constant
\(K_i \) - Proportionality constant
\(V_p \) - Pulse width modulated output voltage
\(I_{qr} \) - Quadrature axis component of rotor current
\(I_{qs} \) - Quadrature axis component of stator current
\(\omega_{\text{rated}} \) - Rated angular speed
\(H_r \) - Rated Power
\(R \) - Resistance
\(I_2, I_4 \) - Rotor currents referred to the stator
\(\Phi_r \) - Rotor flux
\(X_r \) - Rotor reactance
\(r_r \) - Rotor resistance
\(R_2 \) - Rotor resistance referred to the stator
\(R_3 \) - Rotor resistance referred to the stator due to the backward field
\(R_3 \) - Rotor resistance referred to the stator due to the forward field
\(\dot{\omega}_r \) - Rotor speed
\(s \) - S domain variable
\(I_{07} \) - Seventh harmonic component of output current
V_{07} - Seventh harmonic component of output voltage
\dot{s} - Slip
a - Slope of the linear function
θ - Space angle
N - Speed
x, x_1, x_2, x_3, x_4 - State space variables
I - Stator current
Φ_s - Stator flux
X_s - Stator reactance
R_1 - Stator resistance
r_s - Stator resistance
V_s - Supply voltage
S, S_1, S_2, S_3, S_4 - Switches
S_5, S_6, S_7, S_8, S_9 - Switches
N_s - Synchronous speed
n_s - Synchronous speed
t - Time
T - Torque
T_m - Torque developed by the motor
P_1 - Training pairs
B - Viscous friction
V_2 - Voltage across the backward field rotor resistance
V_1 - Voltage across the forward field rotor resistance
V_{ab} - Voltage across the rotor reactance due to the forward field
V_{ji} - Weight matrix
V, W - Weight vector
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog to Digital Converter</td>
</tr>
<tr>
<td>ALU</td>
<td>Arithmetic and Logic Unit</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>APWM</td>
<td>Asymmetrical Pulse Width Modulation</td>
</tr>
<tr>
<td>BPN</td>
<td>Backpropagation Network</td>
</tr>
<tr>
<td>BPNN</td>
<td>Backpropagation Neural Network</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CSD</td>
<td>Constant Speed Drive</td>
</tr>
<tr>
<td>D fingers</td>
<td>Data Pointer</td>
</tr>
<tr>
<td>DPH</td>
<td>Data Pointer High</td>
</tr>
<tr>
<td>DPL</td>
<td>Data Pointer Low</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital to Analog Converter</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically Erasable Programmable Read Only Memory</td>
</tr>
<tr>
<td>EPROM</td>
<td>Erasable Programmable Read Only Memory</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>GRNN</td>
<td>General Regression Neural Network</td>
</tr>
<tr>
<td>H/L</td>
<td>Hidden layer</td>
</tr>
<tr>
<td>I/L</td>
<td>Input layer</td>
</tr>
<tr>
<td>IPF</td>
<td>Input Power Factor</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>IPT</td>
<td>Instantaneous power Theory</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated Gate Bipolar Transistor</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Chip</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>MATLAB</td>
<td>Matrix Laboratory</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal Oxide Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>μF</td>
<td>Microfarad</td>
</tr>
<tr>
<td>NN</td>
<td>Neural Network</td>
</tr>
<tr>
<td>op-amp</td>
<td>Operational Amplifier</td>
</tr>
<tr>
<td>OEC</td>
<td>Optimal Efficiency Control</td>
</tr>
<tr>
<td>O/L</td>
<td>Output layer</td>
</tr>
<tr>
<td>PAC</td>
<td>Phase Angle Control</td>
</tr>
<tr>
<td>PACC</td>
<td>Phase Angle Controlled Chopper</td>
</tr>
<tr>
<td>PNN</td>
<td>Polynomial Neural Network</td>
</tr>
<tr>
<td>PFC</td>
<td>Powerfactor Correction</td>
</tr>
<tr>
<td>PrNN</td>
<td>Probabilistic Neural Network</td>
</tr>
<tr>
<td>PC</td>
<td>Program Counter</td>
</tr>
<tr>
<td>PI controller</td>
<td>Proportional, Integral controller</td>
</tr>
<tr>
<td>PID controller</td>
<td>Proportional, Integral and Derivative controller</td>
</tr>
<tr>
<td>PWMC</td>
<td>Pulse Width Modulated Chopper</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>EA</td>
<td>Rate of change of Error as the Activity level of unit is changed.</td>
</tr>
<tr>
<td>RET</td>
<td>Return</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>SPIM</td>
<td>Single Phase Induction Machine</td>
</tr>
<tr>
<td>SPWM</td>
<td>Sinusoidal Pulse Width Modulation</td>
</tr>
<tr>
<td>SFR</td>
<td>Special Function Register</td>
</tr>
<tr>
<td>SMM</td>
<td>Symmetrical Multiple Modulation</td>
</tr>
<tr>
<td>i.e</td>
<td>That is</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
</tr>
<tr>
<td>TRIAC switch</td>
<td>Triode AC Switch</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>VSD</td>
<td>Variable Speed Drive</td>
</tr>
<tr>
<td>VSVV</td>
<td>Variable Speed Variable Voltage</td>
</tr>
<tr>
<td>VVVF</td>
<td>Variable Voltage Variable Frequency</td>
</tr>
<tr>
<td>VLSI</td>
<td>Very Large Scale Integration</td>
</tr>
<tr>
<td>v/f</td>
<td>voltage / frequency</td>
</tr>
<tr>
<td>ZCD</td>
<td>Zero Crossing Detector</td>
</tr>
</tbody>
</table>