List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.1.1</td>
<td>Different types of isotherms of porous materials</td>
<td>4</td>
</tr>
<tr>
<td>Fig.1.2</td>
<td>Different types of hysteresis loops</td>
<td>5</td>
</tr>
<tr>
<td>Fig.1.3</td>
<td>TO$_4$ tetrahedra where α is the O-T-O bond angle and β is the T-O-T bond angle</td>
<td>10</td>
</tr>
<tr>
<td>Fig.1.4</td>
<td>Cancrinite cage structure built from six 4-ring and five 6-ring secondary building units</td>
<td>11</td>
</tr>
<tr>
<td>Fig.1.5</td>
<td>Secondary building units of zeolite structure</td>
<td>12</td>
</tr>
<tr>
<td>Fig.1.6</td>
<td>Generation of acid sites in MFI by treating with NH$_4$NO$_3$</td>
<td>14</td>
</tr>
<tr>
<td>Fig.1.7</td>
<td>Generation of acid sites in MFI by direct treatment HCl</td>
<td>15</td>
</tr>
<tr>
<td>Fig.1.8</td>
<td>Reactant shape selectivity of MFI</td>
<td>16</td>
</tr>
<tr>
<td>Fig.1.9</td>
<td>Transition state shape selectivity of MFI</td>
<td>16</td>
</tr>
<tr>
<td>Fig.1.10</td>
<td>Product shape selectivity of MFI</td>
<td>17</td>
</tr>
<tr>
<td>Fig.1.11</td>
<td>Ion exchange properties of zeolite</td>
<td>19</td>
</tr>
<tr>
<td>Fig.1.12</td>
<td>Role of TPA-Br in micropore formation in MFI</td>
<td>25</td>
</tr>
<tr>
<td>Fig.1.13a</td>
<td>Influence of temperature on the crystallization of Zeolite A</td>
<td>26</td>
</tr>
<tr>
<td>Fig.1.13b</td>
<td>Influence of temperature on the crystallization of Zeolite ZSM-5</td>
<td>26</td>
</tr>
<tr>
<td>Fig.2.1</td>
<td>XRD patterns of S100</td>
<td>62</td>
</tr>
<tr>
<td>Fig.2.2</td>
<td>XRD patterns of S100</td>
<td>63</td>
</tr>
<tr>
<td>Fig.2.3</td>
<td>FT-IR Spectra of S100</td>
<td>65</td>
</tr>
<tr>
<td>Fig.2.4</td>
<td>FT-IR Spectra of S200</td>
<td>65</td>
</tr>
<tr>
<td>Fig.2.5</td>
<td>N$_2$ Adsorption isotherm of Calcined S100 Sample</td>
<td>67</td>
</tr>
<tr>
<td>Fig.2.6</td>
<td>N$_2$ Adsorption isotherm of Calcined S200 Sample</td>
<td>67</td>
</tr>
<tr>
<td>Fig.2.7</td>
<td>SEM Picture of S100</td>
<td>68</td>
</tr>
<tr>
<td>Fig.2.8</td>
<td>SEM Picture of S200</td>
<td>68</td>
</tr>
<tr>
<td>Fig.2.9</td>
<td>XRD patterns of S100 Zr3</td>
<td>69</td>
</tr>
</tbody>
</table>
Fig. 2.10 XRD patterns of S100Zr6
Fig. 2.11 XRD patterns of S100Zr9
Fig. 2.12 XRD patterns of S200Zr6
Fig. 2.13 Shifting of 2 Theta values of prominent peaks with increasing level of Zr substitution w.r.t. parent MFI (a) S100Zr3 (b) S100Zr6 (c) S100Zr9 (d) S200Zr6 (e) S100 (f) S200
Fig. 2.14 FT-IR Spectra of S100Zr3
Fig. 2.15 FT-IR Spectra of S100Zr6
Fig. 2.16 FT-IR Spectra of S100Zr9
Fig. 2.17 FT-IR Spectra of S200Zr6
Fig. 2.18 FT-IR spectra of Zr-MFI samples synthesized (a) S100Zr3 (b) S100Zr6 (c) S100Zr9 (d) S200Zr6 (e) S100 showing distortion in the range 900-1250 cm\(^{-1}\) wrt parent MFI
Fig. 2.19 TGA Curve of S100Zr3
Fig. 2.20 TGA Curve of S100Zr6
Fig. 2.21 TGA Curve of S100Zr9
Fig. 2.22 TGA Curve of S200Zr6
Fig. 2.23 UV-Vis DR Spectra of S100Zr3
Fig. 2.24 UV-Vis DR Spectra of S100Zr6
Fig. 2.25 UV-Vis DR Spectra of S100Zr9
Fig. 2.26 UV-Vis DR Spectra of S200Zr6
Fig. 2.27 N\(_2\) Adsorption isotherm of Calcined S100Zr3
Fig. 2.28 N\(_2\) Adsorption isotherm of Calcined S100Zr6
Fig. 2.29 N\(_2\) Adsorption isotherm of Calcined S100Zr9
Fig. 2.30 N\(_2\) Adsorption isotherm of Calcined S200Zr6
Fig. 2.31 SEM Picture of S100Zr3
Fig. 2.32 SEM Picture of S100Zr6
Fig. 2.33 SEM Picture of S100Zr9
Fig. 2.34 SEM Picture of S200Zr6
Fig. 3.1 XRD patterns of S100In1
Fig. 3.2 XRD patterns of S100In2
Fig. 3.3 XRD patterns of S100In3
Fig. 3.4 Shifting of 2 Theta values of prominent peaks with increasing level of In Substitution wrt parent MFI
 (a) S100In1 (b) S100In2 (c) S100In3 (d) S100
Fig. 3.5 FT-IR Spectra of S100In1
Fig. 3.6 FT-IR Spectra of S100In2
Fig. 3.7 FT-IR Spectra of S100In3
Fig. 3.8 TGA Curve of S100In1
Fig. 3.9 TGA Curve of S100In2
Fig. 3.10 TGA Curve of S100In3
Fig. 3.11 UV-Vis DR Spectra of S100In1
Fig. 3.12 UV-Vis DR Spectra of S100In2
Fig. 3.13 UV-Vis DR Spectra of S100In3
Fig. 3.14 \(\text{N}_2 \) Adsorption isotherm of Calcined S100In1
Fig. 3.15 \(\text{N}_2 \) Adsorption isotherm of Calcined S100In2
Fig. 3.16 \(\text{N}_2 \) Adsorption isotherm of Calcined S100In3
Fig. 3.17 SEM Picture of S100In1
Fig. 3.18 SEM Picture of S100In2
Fig. 3.19 SEM Picture of S100In3
Fig. 3.20 XRD patterns of S100Ru1
Fig. 3.21 XRD patterns of S100Ru2
Fig. 3.22 XRD patterns of S100Ru3
IV

Fig.3.23 Shifting of 2 theta values of prominent peaks with Increasing level of Ru substitution wrt parent MFI

[a] S100Ru1 [b] S100Ru2 [c] S100Ru3 [d] S100

Fig.3.24 FT-IR Spectra of S100Ru1

Fig.3.25 FT-IR Spectra of S100Ru2

Fig.3.26 FT-IR Spectra of S100Ru3

Fig.3.27 TGA Curve of S100Ru1

Fig.3.28 TGA Curve of S100Ru2

Fig.3.29 TGA Curve of S100Ru3

Fig.3.30 UV-Vis DR Spectra of S100Ru1

Fig.3.31 UV-Vis DR Spectra of S100Ru2

Fig.3.32 UV-Vis DR Spectra of S100Ru3

Fig.3.33 N₂ Adsorption isotherm of Calcined S100Ru1

Fig.3.34 N₂ Adsorption isotherm of Calcined S100Ru2

Fig.3.35 N₂ Adsorption isotherm of Calcined S100Ru3

Fig.3.36 SEM Picture of S100Ru1

Fig.3.37 SEM Picture of S100Ru2

Fig.3.38 SEM Picture of S100Ru3

Fig.4.1 Effect of reaction time on hydroxylation of phenol on S100

Fig.4.2 Effect of reaction time on hydroxylation of phenol on S200

Fig.4.3 Effect of reaction time on hydroxylation of phenol on S100Zr3

Fig.4.4 Effect of reaction time on hydroxylation of phenol on S100In3

Fig.4.5 Effect of reaction time on hydroxylation of phenol on S100Ru3
Fig. 4.6 Effect of reaction time on hydroxylation of phenol in water on S100

Fig. 4.7 Effect of reaction time on hydroxylation of phenol in water on S200

Fig. 4.8 Effect of reaction time on hydroxylation of phenol in water on S100Zr3

Fig. 4.9 Effect of reaction time on hydroxylation of phenol in water on S100In3

Fig. 4.10 Effect of reaction time on hydroxylation of phenol in water on S100Ru3

Fig. 4.11 Effect of reaction time on hydroxylation of phenol in CH₃CN on S100

Fig. 4.12 Effect of reaction time on hydroxylation of phenol in CH₃CN on S200

Fig. 4.13 Effect of reaction time on hydroxylation of phenol in CH₃CN on S100Zr3

Fig. 4.14 Effect of reaction time on hydroxylation of phenol in CH₃CN on S100In3

Fig. 4.15 Effect of reaction time on hydroxylation of phenol in CH₃CN on S100Ru3

Fig. 4.16 Effect of temperature on hydroxylation of phenol on S100

Fig. 4.17 Effect of temperature on hydroxylation of phenol on S200

Fig. 4.18 Effect of temperature on hydroxylation of phenol on S100Zr3

Fig. 4.19 Effect of temperature on hydroxylation of phenol on S100In3
Fig. 4.20 Effect of temperature on hydroxylation of phenol on S100Ru3

Fig. 4.21 Effect of amount of catalyst on hydroxylation of phenol on S100

Fig. 4.22 Effect of amount of catalyst on hydroxylation of phenol on S200

Fig. 4.23 Effect of amount of catalyst on hydroxylation of phenol on S100Zr3

Fig. 4.24 Effect of amount of catalyst on hydroxylation of phenol on S100In3

Fig. 4.25 Effect of amount of catalyst on hydroxylation of phenol on S100Ru3

Fig. 4.26 Comparison of catalytic activity of the catalysts containing different content of Zr on hydroxylation of phenol

Fig. 4.27 Comparison of catalytic activity of the catalysts containing different content of In on hydroxylation of phenol

Fig. 4.28 Comparison of catalytic activity of the catalysts containing different content of Ru on hydroxylation of phenol

Fig. 4.29 Comparison of hydroxylation of phenol (without additional water and organic solvent) using different catalyst

Fig. 4.30 Comparison of hydroxylation of phenol (with additional water) using different catalyst

Fig. 4.31 Comparison of hydroxylation of phenol in CH₃CN on different catalyst

Fig. 4.32 Comparison of hydroxylation of phenol in different solvent condition

Fig. 4.33 Mechanism of phenol hydroxylation on H-MFI

Fig. 4.34 Mechanism of phenol hydroxylation on M-MFI
List of Tables

Table 1.1 Evolution of molecular sieve materials
Table 1.2 IUPAC designation of some zeolites and year of innovation
Table 1.3 Some natural and synthetic zeolites
Table 1.4 The raw materials, the source of raw materials and their function in the zeolite synthesis
Table 1.5 Metal ions exhibiting tetrahedral coordination and their ionic radii (Szostak, 1989)
Table 1.6 Information obtained from XRD patterns
Table 1.7 The assignments of the main IR bands
Table 1.8 Informations drawn from SEM pictures of zeolites
Table 2.1 Molar ratios of the components in the gel and other conditions maintained during the synthesis of the MFI zeolite samples
Table 2.2 Molar ratios of the components in the gel and other conditions maintained during the synthesis of the MFI zeolite samples
Table 2.3 Crystallite size and percentage of crystallinity (C_{hkl}) of the synthesized MFI sample
Table 2.4 Specific surface area, pore size and pore volume of the synthesized Samples
Table 2.5 Unit cell parameters of Zr-MFI samples
Table 2.6 Shift in 2Θ value of 50I peaks of the Zr-MFI samples with respect to parent MFI
Table 2.7 Crystallite size and percentage of crystallinity (C_{hkl}) of the synthesized Zr-MFI sample
Table 2.8 Percentage of weight loss of the Zr-MFI samples observed during TG Analysis
Table 2.9 Specific surface area, pore size and pore volume of synthesized Zr-MFI Samples 85
Table 2.10 Theoretical and determined amount of Zr incorporated in the synthesized samples 85
Table 3.1 Molar ratios of the components in the gel and other conditions maintained during the synthesis of In-MFI zeolite samples 93
Table 3.2 Molar ratios of the components in the gel and other conditions maintained during the synthesis of Ru-MFI zeolite samples 94
Table 3.3 Expansion of unit cell with increasing level of In in MFI samples 99
Table 3.4 Shift in 2θ value of 501 peaks of the In-MFI samples with respect to parent MFI 100
Table 3.5 Crystallite size and percentage of crystallinity (C_hkl) of the synthesized In-MFI sample 100
Table 3.6 Percentage of weight loss of the In-MFI samples observed during TG Analysis 105
Table 3.7 Specific surface area, pore size and pore volume of synthesized In-MFI Samples 110
Table 3.8 Expansion of unit cell with increasing level of Ru in MFI samples 115
Table 3.9 Shift in 2θ value of 501 peaks of the Ru-MFI samples with respect to parent MFI 115
Table 3.10 Crystallite size and percentage of crystallinity (C_hkl) of the synthesized Ru-MFI sample 115
Table 3.11 Percentage of weight loss of the Ru-MFI samples observed during TG Analysis 120
Table 3.12 Specific surface area, pore size and pore volume of synthesized Ru-MFI Samples

Table 4.1 Hydroxylation of phenol reaction performed on other catalysts earlier

Table 4.2 Effect of reaction time on phenol hydroxylation on S100

Table 4.3 Effect of reaction time on phenol hydroxylation on S200

Table 4.4 Effect of reaction time on phenol hydroxylation on S100Zr3

Table 4.5 Effect of reaction time on phenol hydroxylation on S100In3

Table 4.6 Effect of reaction time on phenol hydroxylation on S100Ru3

Table 4.7 Effect of reaction time on phenol hydroxylation in additional water on S100

Table 4.8 Effect of reaction time on phenol hydroxylation in additional water on S200

Table 4.9 Effect of reaction time on phenol hydroxylation in additional water on S100Zr3

Table 4.10 Effect of reaction time on phenol hydroxylation in additional water on S100In3

Table 4.11 Effect of reaction time on phenol hydroxylation in additional water on S100Ru3

Table 4.12 Effect of reaction time on phenol hydroxylation in CH₃CN on S100

Table 4.13 Effect of reaction time on phenol hydroxylation in CH₃CN on S200

Table 4.14 Effect of reaction time on phenol hydroxylation in CH₃CN on S100Zr3
Table 4.29 Comparison of the hydroxylation of phenol using different content of Ru in the catalyst 166
Table 4.30 Comparison of phenol hydroxylation (without additional water and organic solvent) using different catalyst 167
Table 4.31 Comparison of phenol hydroxylation in additional water using different catalyst 168
Table 4.32 Comparison of phenol hydroxylation in acetonitrile using different catalyst 169
Table 4.33 Comparison of conversion of phenol in different media 172
List of Schemes

Scheme 1.1 Classification of the porous materials 2
Scheme 1.2 Generation of acid sites in MFI by treating with NH₄NO₃ 14
Scheme 1.3 Generation of acid sites in MFI by direct treatment HCl 15
Scheme 1.4 Different approaches to modify zeolites for improving their structural features and inherent properties 30
Scheme 4.1 Hydroxylation of phenol into diphenols 131

List of Relations

Relation 1 \[\%C = 100 \times \frac{I_{hkl}}{(I_b + I_{hkl})} \] 63
Relation 2 \[D_{hkl} = \frac{K\lambda}{h} (\beta \times \cos \theta) \] 63
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IUPAC</td>
<td>International Union for Pure and Applied chemistry</td>
</tr>
<tr>
<td>ZSM</td>
<td>Zeolite Socony Mobil</td>
</tr>
<tr>
<td>MCM</td>
<td>Mobil Crystalline Material</td>
</tr>
<tr>
<td>SAPO</td>
<td>Silicoaluminophosphate</td>
</tr>
<tr>
<td>MeAPO</td>
<td>Metal Alumino Phosphate</td>
</tr>
<tr>
<td>BDDT</td>
<td>Brunauer Deming Deming and Teller</td>
</tr>
<tr>
<td>MFI</td>
<td>Mobil Five</td>
</tr>
<tr>
<td>SBU</td>
<td>Secondary Building Units</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation Exchange Capacity</td>
</tr>
<tr>
<td>TMA</td>
<td>Tetramethylammonium</td>
</tr>
<tr>
<td>TPA</td>
<td>Tetrapropylammonium</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared spectroscopy</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>DRS</td>
<td>Diffused Reflectance Spectroscopy</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer, Emmett and Teller</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy dispersive X-ray</td>
</tr>
<tr>
<td>CL</td>
<td>Catechol</td>
</tr>
<tr>
<td>HQ</td>
<td>Hydroquinone</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas Chromatography and Mass Spectroscopy</td>
</tr>
<tr>
<td>TOS</td>
<td>Time on Stream</td>
</tr>
</tbody>
</table>
Notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>θ</td>
<td>Bragg angle</td>
</tr>
<tr>
<td>λ</td>
<td>Wave length</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>p₀</td>
<td>Saturated vapour pressure</td>
</tr>
<tr>
<td>nm</td>
<td>Nano meter</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
</tbody>
</table>