Contents

Acknowledgements v

Abstract vii

List of Symbols and their Units xvii

List of Abbreviations xx

List of Figures xxii

List of Tables xxxix

1 Introduction to Power Quality Issues and Solutions with Emphasis on Shunt Active Power Filters 1

1.1 Introduction 1

1.2 Power quality 2

1.3 Mitigation of power quality problems 3

1.3.1 Circuit arrangement 3

1.3.2 Utilization of power quality improvement equipment 4

1.4 Power quality improvement devices - passive filters 4

1.5 Need of active power filter 5

1.6 Different types of active power filter 6

1.6.1 Shunt active power filter 6

1.6.2 Series active power filter 6

1.6.3 Hybrid active power filter 8
3.3.2 Synchronous reference frame method 44
3.3.3 DC-Link voltage regulation method 45
3.3.4 Fryze current computation technique 46
3.4 Design considerations for shunt active power filter 47
3.4.1 Active power filter inductor and dc-link design (design for simulation studies) 47

4 Current Error Space Phasor based Hysteresis Controller for Two-Level Shunt Active Power Filter

4.1 Principle of current error space phasor based hysteresis controller . 50
4.2 Analysis of current error space phasor based hysteresis controller for two-level shunt active power filter 52
4.2.1 Formation of current error space phasor boundary 52
4.2.2 SAPF voltage vector selection for each sector 55
4.2.3 Region detection of hexagonal boundary 61
4.2.4 Self-adaptive sector change detection logic 65

5 Simulation Results of Current Error Space Phasor based Hysteresis Controller for Two-level Shunt Active Power Filter

5.1 Balanced mains voltage conditions 73
5.1.1 Instantaneous reactive power theory 73
5.1.2 Synchronous reference frame method 76
5.1.3 DC-link voltage regulation method 79
5.1.4 Fryze current computation technique 81
5.2 Unbalanced mains voltage conditions 84
5.2.1 Instantaneous reactive power theory 86
5.2.2 Synchronous reference frame method 88
5.2.3 DC-link voltage regulation method 91
5.2.4 Fryze current computation method 93
5.3 Variation in dc-link voltage .. 96
5.4 Transient behavior of SAPF under load variations 101
5.5 Comparison of proposed controller based SAPF with hysteresis controller based SAPF .. 103

6 Current Error Space Phasor based Hysteresis Controller for Three-level Shunt Active Power Filter 105

6.1 Analysis of current error space phasor based hysteresis controller for three-level SAPF ... 106
6.1.1 Formation of current error space phasor boundary 106
6.1.2 SAPF voltage vector selection for each sector 109
6.1.3 Region detection of hexagonal boundary 112
6.1.4 Self-adaptive sector change detection logic 112

6.2 Simulation results of current error space phasor based hysteresis controller for three-level shunt active power filter 114
6.2.1 Three-level neutral point clamped converter based SAPF ... 119
6.2.2 Three-level flying Capacitor based SAPF 122

6.3 Transient behavior of three-level SAPF under load variations 126

7 Digital Signal Processor based Hardware Implementation of Current Error Space Phasor based Hysteresis Controller for Two-level Shunt Active Power Filter 128

7.1 Hardware implementation ... 129
7.1.1 Sensor board ... 131
7.1.2 Offset circuit .. 132
7.1.3 Digital signal processor TMS320LF2407A based implementation of reference compensating current generation method and proposed controller ... 134
7.1.4 Gate driver board and two-level converter of SAPF 136

7.2 Experimental results ... 137
7.2.1 PCC voltage and load current 137
7.2.2 Sensing of various parameters and processing in DSP 138
7.2.3 Reference compensating currents 139
7.2.4 Behavior of the system without compensation 140
7.2.5 Performance of current error space phasor based hysteresis con-
troller (without using outer hysteresis band for sector change
detection) for two-level SAPF 141
7.2.6 Effects of hysteresis band variation on the performance of pro-
posed controller (without using outer hysteresis band for sector
change detection) based two-level SAPF 146
7.2.7 Transient behavior of proposed controller (without using outer
hysteresis band for sector change detection) based SAPF under
load variations .. 147
7.2.8 Performance of current error space phasor based hysteresis con-
troller (Using outer hysteresis band for sector change detection)
for two-level SAPF .. 149
7.2.9 Effects of hysteresis band variation on the performance of pro-
posed controller (Using outer hysteresis band for sector change
detection) based two-level SAPF 154
7.2.10 Transient behavior of proposed controller (Using outer hystere-
sis band for sector change detection) based SAPF under load
variations .. 156

8 Conclusion and Scope for Future Work 160
 8.1 Conclusion .. 160
 8.2 Scope for future work .. 163

References ... 165

List of Publications out of This Thesis 178