<table>
<thead>
<tr>
<th>6.27</th>
<th>Sectional view of consolidated clay sample (end of 320kPa pressure) with central Trpod shape sand drain (TSSD) of n’11.04</th>
<th>520</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.28</td>
<td>Shaking table with Oedometer, vane shear and vibration meter</td>
<td>521</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS</td>
<td>Cohesive non-swelling</td>
</tr>
<tr>
<td>H</td>
<td>Height / thickness of the sample</td>
</tr>
<tr>
<td>R</td>
<td>Radius of the soil sample or Oedometer</td>
</tr>
<tr>
<td>K</td>
<td>Permeability of the sand used for vertical drain</td>
</tr>
<tr>
<td>C_r</td>
<td>Coefficient of consolidation through radial drainage</td>
</tr>
<tr>
<td>C_v</td>
<td>Coefficient of consolidation through vertical drainage</td>
</tr>
<tr>
<td>PVD</td>
<td>Prefabricated vertical drain</td>
</tr>
<tr>
<td>t</td>
<td>Time at any given instance</td>
</tr>
<tr>
<td>Tr</td>
<td>Time factor for consolidation through radial drainage</td>
</tr>
<tr>
<td>Tr,50</td>
<td>Time factor for 50% consolidation through radial drainage</td>
</tr>
<tr>
<td>Tr,80</td>
<td>Time factor for 80% consolidation through radial drainage</td>
</tr>
<tr>
<td>U</td>
<td>Degree of consolidation due to combined linear and radial drainage</td>
</tr>
<tr>
<td>C_h</td>
<td>Coefficient of consolidation through horizontal drainage</td>
</tr>
<tr>
<td>R</td>
<td>Ratio of r/re with reference to isochrones</td>
</tr>
<tr>
<td>r</td>
<td>Any radial distance with reference to Oedometer</td>
</tr>
<tr>
<td>re</td>
<td>Radius of influence</td>
</tr>
<tr>
<td>r1</td>
<td>Radial point nearer to drain/first radial point with reference to Oedometer</td>
</tr>
<tr>
<td>r2</td>
<td>Radial point at mid distance/second radial point with reference to Oedometer</td>
</tr>
<tr>
<td>r3</td>
<td>Radial point away from drain/third radial point with reference to Oedometer</td>
</tr>
<tr>
<td>U_R</td>
<td>Average degree of consolidation for radial flow</td>
</tr>
<tr>
<td>U_r</td>
<td>Degree of radial consolidation</td>
</tr>
<tr>
<td>u_o</td>
<td>Initial pore water pressure</td>
</tr>
<tr>
<td>u_r</td>
<td>Pore water pressure at given radial point</td>
</tr>
<tr>
<td>T_r</td>
<td>Time factor for radial consolidation</td>
</tr>
<tr>
<td>r_w</td>
<td>Radius of filter well (drain) with reference to Barron’s theory</td>
</tr>
<tr>
<td>k_v</td>
<td>Coefficient of vertical permeability</td>
</tr>
<tr>
<td>k_h</td>
<td>Coefficient of horizontal permeability</td>
</tr>
<tr>
<td>U</td>
<td>Degree of consolidation in general</td>
</tr>
<tr>
<td>U_z</td>
<td>Degree of vertical consolidation</td>
</tr>
<tr>
<td>T_h</td>
<td>Time factor for horizontal drainage</td>
</tr>
<tr>
<td>e</td>
<td>Void ratio</td>
</tr>
</tbody>
</table>
- \(n \) \: Porosity
- \(A_P \) \: Applied pressure in kPa
- \(n \) \: Ratio of \(r_e/r_w \)
- \(k_w \) \: Permeability of well backfill
- \(r_w \) \: Radius of drain/well
- \(\frac{de}{dt} \) \: Rate of vertical strain
- \(Q \) \: Well discharge capacity
- \(q'(z) \) \: Rate of loading at time \(t \)
- \(L \) \: Characteristic length of the drain
- \(k_c' \) \: Coefficient of permeability in smeared zone
- \(\Delta P \) \: Pressure increment in kPa
- \(q \) \: Coefficient of volume compressibility of the pore fluid
- \(r_w \) \: Unit weight of pore fluid
- \(v \) \: Volume of pore fluid
- \(l_w \) \: Degree of saturation
- \(Pa \) \: Atmospheric pressure
- \(K_v \) \: Coefficient of permeability in the vertical direction
- \(K_r \) \: Coefficient of permeability in the radial direction
- \(S \) \: Compression modulus
- \(U(t) \) \: Mean excess pore pressure
- \(U_0 \) \: Initial excess pore pressure
- \(V_j \) \: Volume of soil below depth below \(z = j(z) \)
- \(Q(t) \) \: Total amount of ground water which has been transported through the drain up to time \(t \)
- \(u_z \) \: Vertical upward displacement
- \(B_e \) \: Equivalent drainage diameter
- \(C_{wr} \) \: Coefficient of vertical consolidation for radial drainage
- \(U_R \) \: Average degree of consolidation
- \(T_r \) \: Time factor for consolidation due to radial flow
- \(\lambda \) \: Lump parameter
- \(C_r \) \: Coefficient of consolidation due to radial drainage
- \(C_e \) \: Coefficient due to permeability and porosity
- \(WCR \) \: Water content ratio
- \(CPR \) \: Consolidation pressure ratio
- \(k_h \) \: Coefficient of permeability for horizontal flow
k_v Coefficient of permeability for vertical flow
C_r Coefficients of consolidation due to radial flow
T_r Time factor for consolidation due to radial flow
U_r Degree of consolidation due to the radial drainage
C_{cr} Compression index for consolidation due to radial flow
P_{cr} Primary compression ratio for consolidation due to radial flow
u_r/u_o Pore pressure ratio for radial flow
a_{wr} Coefficient of compressibility due to radial flow
m_{wr} Coefficient of volume change due to radial flow
P Consolidation pressure
SM Settlement analysis
PM Pore pressure analysis
e Void ratio
ζ Shear strength of soil
β Angle of orientation
SD Sand drain
SW Sandwich
CJ Coir-jute fiber drain
PF Polypropylene fiber drain
n ratio of radius of odometer to the radius of drain
Sa Surface area
De Equivalent diameter of geodrain
SEM Scanning electron microscopy
r Radius of clay sample in general
r_d Radius of drain
B_d Breadth of drain
T_d Thickness of drain
r_1 first radial point for measurement of pore pressure at a distance of $r/4$
r_2 second radial point for measurement of pore pressure at a distance of $r/2$
r_3 third radial point for measurement of pore pressure at a distance of $3r/4$
H thickness of final consolidated clay sample
h_t Top of final consolidated clay sample
h_c Centre of final consolidated clay sample
h_b Bottom of final consolidated clay sample
\(h_{b1} \)
Top of final consolidated clay sample at first radial point \(r_1 \)

\(h_{b2} \)
Top of final consolidated clay sample at first radial point \(r_2 \)

\(h_{b3} \)
Top of final consolidated clay sample at first radial point \(r_3 \)

\(h_{cr1} \)
Centre of final consolidated clay sample at first radial point \(r_1 \)

\(h_{cr2} \)
Centre of final consolidated clay sample at first radial point \(r_2 \)

\(h_{cr3} \)
Centre of final consolidated clay sample at first radial point \(r_3 \)

\(h_{br1} \)
Bottom of final consolidated clay sample at first radial point \(r_1 \)

\(h_{br2} \)
Bottom of final consolidated clay sample at first radial point \(r_2 \)

\(h_{br3} \)
Bottom of final consolidated clay sample at first radial point \(r_3 \)

\(I_{rd} \)
Clay-Drain interface at top of final consolidated clay sample at location \(r_d \)

\(I_{cr} \)
Clay-Drain interface at centre of final consolidated clay sample at location \(r_d \)

\(I_{br} \)
Clay-Drain interface at bottom of final consolidated clay sample at location \(r_d \)

\(I_{b1} \)
Clay-Drain interface at top of final consolidated clay sample at location \(r_1 \)

\(I_{b2} \)
Clay-Drain interface at top of final consolidated clay sample at location \(r_2 \)

\(I_{b3} \)
Clay-Drain interface at top of final consolidated clay sample at location \(r_3 \)

\(I_{cr1} \)
Clay-Drain interface at centre of final consolidated clay sample at location \(r_1 \)

\(I_{cr2} \)
Clay-Drain interface at centre of final consolidated clay sample at location \(r_2 \)

\(I_{cr3} \)
Clay-Drain interface at centre of final consolidated clay sample at location \(r_3 \)

\(I_{br1} \)
Clay-Drain interface at bottom of final consolidated clay sample at location \(r_1 \)

\(I_{br2} \)
Clay-Drain interface at bottom of final consolidated clay sample at location \(r_2 \)

\(\Psi \)
Permittivity

\(\theta \)
Transmissivity

\(d_e \)
Oedometer diameter

\(d_w \)
Drain diameter

\(\Delta u \)
Initial pore water pressure

\(\Delta P \)
Applied incremental stress

\(C_e \)
Equivalent compressibility of pore water line and connection

\(C_m \)
Compressibility of pore pressure measuring element

\(C_s \)
Compressibility of soil skeleton
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>h₁, h₂</td>
<td>Initial levels of two mercury surfaces measured above some datum</td>
</tr>
<tr>
<td>h₃</td>
<td>Level of sample measured above some datum</td>
</tr>
<tr>
<td>Yₘ</td>
<td>Unit weight of mercury</td>
</tr>
<tr>
<td>Yₜ</td>
<td>Unit weight of water</td>
</tr>
<tr>
<td>A</td>
<td>Cross-sectional area of the cylinder</td>
</tr>
<tr>
<td>ΔL</td>
<td>Shortening of the spring</td>
</tr>
<tr>
<td>w</td>
<td>Weight of unit length of flexible tube filled with mercury</td>
</tr>
<tr>
<td>k</td>
<td>Spring stiffness</td>
</tr>
<tr>
<td>LVDT</td>
<td>Linear variable differential transformer</td>
</tr>
<tr>
<td>DVM</td>
<td>Digital volt meter</td>
</tr>
<tr>
<td>PVD</td>
<td>Prefabricated vertical drain</td>
</tr>
<tr>
<td>CSSD</td>
<td>Conventional circular shape sand drain</td>
</tr>
<tr>
<td>PSSD</td>
<td>Plus shape sand drain</td>
</tr>
<tr>
<td>TSSD</td>
<td>Tripod shape sand drain</td>
</tr>
<tr>
<td>BSSD</td>
<td>Band shape sand drain</td>
</tr>
<tr>
<td>MIC</td>
<td>Micro structure characterization</td>
</tr>
</tbody>
</table>