LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Global revenue of advanced drug delivery systems</td>
</tr>
<tr>
<td>1.2</td>
<td>Global revenue of pulmonary drug delivery technologies</td>
</tr>
<tr>
<td>2.1</td>
<td>Pathogenesis of pulmonary hypertension</td>
</tr>
<tr>
<td>2.2</td>
<td>Distribution of patients with PAH</td>
</tr>
<tr>
<td>2.3</td>
<td>Pathogenesis of pulmonary hypertension</td>
</tr>
<tr>
<td>2.8</td>
<td>Treatment algorithm for PAH patients</td>
</tr>
<tr>
<td>2.9</td>
<td>Anatomy and Physiology of pulmonary system</td>
</tr>
<tr>
<td>2.10</td>
<td>Factors affecting pulmonary delivery</td>
</tr>
<tr>
<td>2.11</td>
<td>Deposition Efficiency as a function of particle size</td>
</tr>
<tr>
<td>2.12</td>
<td>Nebulizer</td>
</tr>
<tr>
<td>2.13</td>
<td>MDIs</td>
</tr>
<tr>
<td>2.14</td>
<td>DPI</td>
</tr>
<tr>
<td>5.1</td>
<td>Standard plot of sildenafil citrate in water</td>
</tr>
<tr>
<td>5.2</td>
<td>Standard plot of sildenafil citrate in methanol</td>
</tr>
<tr>
<td>5.3</td>
<td>Standard plot of sildenafil citrate in phosphate buffer pH 2.0</td>
</tr>
<tr>
<td>5.4</td>
<td>Standard plot of sildenafil citrate in phosphate buffer pH 2.5</td>
</tr>
<tr>
<td>5.5</td>
<td>Standard plot of Sildenafil citrate in phosphate buffer pH 3.6</td>
</tr>
<tr>
<td>5.6</td>
<td>Standard plot of sildenafil citrate in phosphate buffer pH 4.0</td>
</tr>
<tr>
<td>5.7</td>
<td>Standard plot of sildenafil citrate in phosphate buffer pH 5.0</td>
</tr>
<tr>
<td>5.8</td>
<td>Standard plot of sildenafil citrate in phosphate buffer pH 6.8</td>
</tr>
<tr>
<td>5.9</td>
<td>Standard plot of sildenafil citrate in phosphate buffer pH 7.4</td>
</tr>
<tr>
<td>5.10</td>
<td>Calibration curve of sildenafil citrate in rat lung homogenate</td>
</tr>
<tr>
<td>5.11</td>
<td>HPLC linearity chromatogram of sildenafil citrate in rat lung</td>
</tr>
<tr>
<td></td>
<td>homogenates</td>
</tr>
<tr>
<td>5.12</td>
<td>Standardized effect of spray drying parameters on percent drug content of drug-sugar composites</td>
</tr>
<tr>
<td>5.13</td>
<td>Interaction of process variables affecting percent drug content of drug-sugar composite</td>
</tr>
<tr>
<td>5.14</td>
<td>Standardized effect of variables on percent yield of drug-sugar composites</td>
</tr>
<tr>
<td>5.15</td>
<td>Interaction between air pressure and feed rate to influence percent yield of drug-sugar composites</td>
</tr>
<tr>
<td>5.16</td>
<td>Interaction between Vacuum and feed rate to influence percent yield of drug-sugar composites</td>
</tr>
<tr>
<td>5.17</td>
<td>Interaction between inlet temperature and vacuum to influence percent yield of drug-sugar composites</td>
</tr>
<tr>
<td>5.18</td>
<td>Effect of Variables on Aerodynamic Particle Size of drug-sugar composites</td>
</tr>
<tr>
<td>5.19</td>
<td>Interaction between air pressure and feed rate to influence aerodynamic particle size of drug-sugar composite</td>
</tr>
<tr>
<td>5.20</td>
<td>Interaction between air pressure and vacuum to influence aerodynamic particle size of drug-sugar composites</td>
</tr>
</tbody>
</table>
5.21 Interactions of inlet temperature and air pressure to affect aerodynamic particle size of drug-sugar composites
5.22 Effect of Variables on Moisture Content of drug-sugar composites
5.23 Effect of feed rate on Moisture Content of drug-sugar composites
5.24 Effect of air pressure on Moisture Content of drug-sugar composites
5.25 Effect of vacuum on Moisture Content of drug-sugar composites
5.26 Effect of inlet temperature on Moisture Content of drug-sugar composites
5.27 Standardized effects of Variables on percent drug retained in liposomal dry powder for inhalation
5.28 Interaction of feed rate and vacuum to influence Percent Drug retained in liposomal dry powder for inhalation
5.29 Standardized effects of variables on percent yield of liposomal dry powder for inhalation
5.30 Interaction of feed rate and vacuum to influence percent yield of liposomal dry powder for inhalation
5.31 Interaction of feed rate and inlet temperature to influence Percent yield of liposomal dry powder for inhalation
5.32 Interaction of vacuum and inlet temperature to influence percent yield of liposomal dry powder for inhalation
5.33 Effect of Variables on aerodynamic particle size of liposomal dry powder for inhalation
5.34 Interaction vacuum and inlet temperature to influence aerodynamic particle size of liposomal dry powder for inhalation
5.35 Positive impact of feed rate on aerodynamic particle size of liposomal dry powder for inhalation
5.36 Standardized effect of Variables on moisture content of liposomal dry powder for inhalation
5.37 Interaction of air pressure and inlet temperature on moisture content of liposomal dry powder for inhalation
5.38 Interaction of vacuum and inlet temperature on moisture content of liposomal dry powder for inhalation
5.39 Standardized effects of variables on percent Drug Content of sildenafil-citrate lipid composites
5.40 Standardized effects of Variables on percent yield of sildenafil-lipid composites
5.41 Impact of interaction of variables on percent yield of sildenafil citrate-lipid composites
5.42 Impact of interaction of variables on percent yield of sildenafil citrate-lipid composites
5.43 Standardized effects of variables on aerodynamic particle size of sildenafil citrate-lipid composite
5.44 Impact of interaction of variables on aerodynamic particle size of sildenafil citrate-lipid composites
5.45 Impact of interaction of variables on aerodynamic particle size of sildenafil citrate lipid composites
5.46 Standardized effects of variables on moisture content of sildenafil citrate-lipid composites
5.47 Impact of interaction of variables on moisture content of sildenafil citrate-lipid composites
5.48 Impact of interaction of variables on moisture content of sildenafil citrate-lipid composites
5.49 Impact of interaction of variables on moisture content of sildenafil citrate-lipid composites
5.50 Impact of interaction of variables on moisture content of sildenafil citrate-lipid composites
5.51 Effect of inlet temperature on moisture content of sildenafil citrate-lipid composites
5.52 Standardized effects of variables on percent drug content of sildenafil citrate loaded large porous lipospheres
5.53 Impact of interaction of inlet temperature and air pressure on percent yield of sildenafil citrate loaded large porous lipospheres
5.54 Impact of interaction of inlet temperature and vacuum on percent yield of sildenafil citrate loaded large porous lipospheres
5.55 Impact of interaction of inlet temperature and feed rate on percent yield of sildenafil citrate loaded large porous lipospheres
5.56 Standardized effects of variables on aerodynamic particle size of sildenafil citrate loaded large porous lipospheres
5.57 Impact of interaction of vacuum and feed rate on aerodynamic particle size of sildenafil citrate loaded large porous lipospheres
5.58 Standardized effects of variables on moisture content of sildenafil citrate loaded large porous lipospheres
5.59 Impact of interaction of vacuum and feed rate on moisture content of sildenafil citrate loaded large porous lipospheres
5.60 Impact of interaction of vacuum and inlet temperature on aerodynamic particle size of sildenafil citrate loaded large porous lipospheres
5.61 Transmission electron microscopic image of liposomal dispersion before spray drying
5.62 Transmission electron microscopic image of emulsion feed stock to prepare large porous lipospheres before spray drying
5.63 Zeta potential distribution of sildenafil citrate solution
5.64 Zeta potential distribution of placebo liposomal dispersion
5.65 Zeta potential distribution of sildenafil citrate loaded liposomal dispersion
5.66 Zeta potential distribution of placebo emulsion for large porous lipospheres
5.67 Zeta potential distribution of sildenafil citrate loaded emulsion for large porous liposomes
5.68 Particle size distribution of sildenafil citrate loaded liposomal dispersion before homogenization
5.69 Particle size distribution of sildenafil citrate loaded liposomal dispersion after 3 cycles of homogenization
5.70 Particle size distribution of Placebo liposomal dispersion before homogenization
5.71 Particle size distribution of Placebo liposomal dispersion after homogenization
5.72 Particle size distribution of Placebo emulsion for large porous lipospheres after 2 cycles of homogenization
5.73 Particle size distribution of Placebo emulsion for large porous lipospheres after 3 cycles of homogenization
5.74 Particle size distribution of Sildenafil citrate loaded emulsion for large porous lipospheres after 2 cycles of homogenization
5.75 Particle size distribution of Sildenafil citrate loaded emulsion for large porous lipospheres after 3 cycles of homogenization
5.76 Scanning electron micrograph of conventional DPI of Sildenafil citrate
5.77 Scanning electron micrograph of sildenafil citrate loaded sugar Composites
5.78 Scanning electron micrograph of Sildenafil citrate loaded sugar Composites
5.79 SEM of sildenafil citrate loaded lipid composites
5.80 SEM of sildenafil citrate loaded lipid composites
5.81 SEM of sildenafil citrate loaded lipid composites
5.82 SEM of sildenafil citrate loaded liposomal dry powder
5.83 SEM of sildenafil citrate loaded liposomal dry powder
5.84 SEM of sildenafil citrate loaded liposomal dry powder
5.85 SEM of Sildenafil citrate loaded Large Porous Lipospheres
5.86 SEM of Sildenafil citrate loaded Large Porous Lipospheres
5.87 SEM of Sildenafil citrate loaded Large Porous Lipospheres
5.88 DSC Thermogram of Sildenafil citrate
5.89 DSC Thermogram of Mannitol
5.90 DSC Thermogram of drug-sugar composites of sildenafil citrate
5.91 DSC thermogram showing peaks of DPPC, HSPCand Cholesterol
5.92 DSC Thermogram of D (+) Trehalose dihydrate
5.93 DSC Thermogram of sildenafil citrate-lipid composites spray dried with Trehalose
5.94 Overlapped DSC Thermogram of placebo and sildenafil-citrate loaded liposomal dry powder for inhalation
5.95 Overlapped DSC Thermogram of placebo, sildenafil citrate and sildenafil-citrate loaded large porous lipospheres
X-Ray diffractogram of a) Sildenafil citrate b) Mixture of LH 200 and P 350M (70:30) c) Sildenafil citrate-conventional dry powder

X-Ray diffractogram of a) Placebo for drug-sugar composites (spray dried mannitol) b) Sildenafil citrate c) Sildenafil citrate-mannitol composites (spray dried sildenafil citrate with mannitol)

X-Ray diffractogram of a) Sildenafil citrate b) Placebo for sildenafil citrate lipid composites c) sildenafil citrate lipid composites

X-Ray diffractogram of a) Sildenafil citrate b) Placebo for liposomal dry powder for inhalation c) Sildenafil citrate loaded liposomal dry powder for inhalation

X-Ray diffractogram of a) Sildenafil citrate b) Placebo for large porous liposomes c) Sildenafil citrate loaded large porous liposomes

Particle size distribution of conventional DPI formulation (F1)

Particle size distribution of Drug-sugar composites (F2)

Particle size distribution of liposomal dry powder for inhalation (F3)

Particle size distribution of Drug-lipid composites (F4)

Particle size distribution of large porous liposomes (F5)

Comparison of in-vitro powder deposition on various stages of Andersen Cascade Impactor

Comparison of mean cumulative percent release profile of various Sildenafil citrate dry powder formulations

Comparison of cumulative percent drug release vs time for Conventional DPI and Drug-sugar composites

Comparison of log cumulative percent drug release vs time (First order model fitting) for Conventional DPI and Drug-sugar composites

Hixson’s Crowell model fitting for various Sildenafil citrate dry powder formulations

Korsmeyer-peppas model fitting graph

Higuchi’s model fitting graph

Calibration curve of fluorescein in Methanol

Calibration curve of fluorescein in Dulbecco’s Modified Eagle Medium (DMEM)

Comparison of percent macrophage uptake (in terms of %RFU) of various sildenafil citrate dry powder formulations

Fluorescein and drug loaded Liposomal dry powder (M1) diluted in DMEM

Fluorescein and drug loaded Liposomal dry powder (M2) diluted in DMEM

Fluorescein and drug loaded lipid composites (M3) diluted in DMEM

Fluorescein and drug loaded large porous liposomes (M4) diluted in DMEM

Standard beads (2µm polystyrene fluorescent beads) diluted in DMEM

Alveolar macrophages adhered to the walls
5.122 A contrast view of standard beads taken up by alveolar macrophage after 4h of study
5.123 view of alveolar macrophage with blurred view of glowing standard beads after 4h of study
5.124 A contrast view of formulation M1 taken up by alveolar macrophage after 24h of study
5.125 A contrast view of formulation M2 taken up by alveolar macrophage after 24h of study
5.126 A contrast view of formulation M3 taken up by alveolar macrophage after 24h of study
5.127 A contrast view of formulation M4 taken up by alveolar macrophage after 24h of study
5.128 Illustration of pulmonary drug administration in rats using endotracheal intubation technique
5.129 Effect of different sildenafil citrate formulations (in vivo study)
5.130 Effect of different sildenafil citrate formulations compared with control and MCT treated rats on hemodynamic and biochemical parameters
5.131 Therapeutic study to evaluate sustained potential of sildenafil citrate dry powder formulation
5.132 Histopathological findings on 14th day of preventive study
5.133 Histopathological findings on 28th day of therapeutic study
5.134 HPLC chromatogram for various formulations showing peaks for sildenafil citrate in rat lung homogenates