# LIST OF FIGURES

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Results and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section 2.1</strong></td>
<td></td>
</tr>
<tr>
<td>Figure 2.1.1</td>
<td>The ORTEP representation of I (left) and II (right) at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity. 58</td>
</tr>
<tr>
<td>Figure 2.1.2</td>
<td>Definition of $\Delta_{CN}$ and $\Delta_{CN}'$ used to describe the bonding within the CN&lt;sub&gt;3&lt;/sub&gt; unit of the guanidine moiety of I and II. 59</td>
</tr>
<tr>
<td>Figure 2.1.3</td>
<td>The ORTEP representation of III at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity. 62</td>
</tr>
<tr>
<td>Figure 2.1.4</td>
<td>The ORTEP representation of IV [molecule 1 (left) and molecule 2 (right)] at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity. 66</td>
</tr>
<tr>
<td>Figure 2.1.5</td>
<td>The ORTEP representation of V at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity. 67</td>
</tr>
<tr>
<td>Figure 2.1.6</td>
<td>The ORTEP representation of VI [molecule 1 (left) and molecule 2 (right)] at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity. 68</td>
</tr>
<tr>
<td><strong>Section 2.2</strong></td>
<td></td>
</tr>
<tr>
<td>Figure 2.2.1</td>
<td>The ORTEP representation of LH&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;2,5&lt;/sup&gt;-xylyl at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity. 80</td>
</tr>
<tr>
<td>Figure 2.2.2</td>
<td>The ORTEP representation of IX at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity. 83</td>
</tr>
<tr>
<td>Figure 2.2.3</td>
<td>The ORTEP representation of X the 50% probability level. Only the hydrogen atoms of the amino moieties are shown 84</td>
</tr>
</tbody>
</table>
Contents

Figure 2.2.4  The ORTEP representation of XI at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity. 85

Figure 2.2.5  The ORTEP representation of XII at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity. 86

Figure 2.2.6  A two-dimensional NOESY NMR (400 MHz, CDCl₃) spectrum of IX at 298 K. 93

Figure 2.2.7  Expansion of the 2D NOESY NMR (400 MHz, CDCl₃) spectrum of IX measured at 298 K in the 5.0–9.0 ppm region versus 5.0–9.0 ppm region. 94

Figure 2.2.8  Expansion of the 2D NOESY NMR (400 MHz, CDCl₃) spectrum of IX measured at 298 K in the 1.0–3.1 ppm region versus 3.0–8.0 ppm region. 95

Figure 2.2.9  A VT ¹H NMR (400 MHz, CDCl₃) spectrum of IX shown in the region of 1.45–2.50 ppm for CH₃ protons. 97

Figure 2.2.10  A VT ¹H NMR (400 MHz, CDCl₃) spectrum of IX shown in the region of 5.10–8.70 ppm for NH and ArH protons. 98

Figure 2.2.11  A VT ¹H NMR (400 MHz, CD₂Cl₂) spectra of XI shown for CH₃ protons. 100

Figure 2.2.12  A two-dimensional NOESY NMR (400 MHz, CD₂Cl₂) spectrum of XI measured at 243 K. 102

Figure 2.2.13  Expansion of the 2D NOESY NMR (400 MHz, CD₂Cl₂) spectrum of XI measured at 243 K in the 5.20–7.60 ppm range versus 1.50–2.70 ppm range. 113

Figure 2.2.14  Expansion of the 2D NOESY NMR (400 MHz, CD₂Cl₂) spectrum of XI measured at 243 K in the 10.70–11.70 ppm range versus 1.50–2.70 ppm range. 113

Figure 2.2.15  The ORTEP representation of XIII at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity. 107

Figure 2.2.16  The ³¹P{¹H} NMR (CD₃CN, 161.8 MHz) spectrum of the 109
reaction on mixture obtained from XIII and PTA shown in the region between − 200.0 to + 200.0 ppm.

Section 2.3

Figure 2.3.1 An ORTEP representation of XIV at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity.

Figure 2.3.2 An ORTEP representation of XV [molecule 1 (left) and molecule 2 (right)] at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity.

Figure 2.3.3 An ORTEP representation of XVII at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity.

Figure 2.3.4 An ORTEP representation of XVIII [(molecule 1 (left) and molecule 2 (right))] at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity.

Figure 2.3.5 An ORTEP representation of the salt XIX at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity.

Figure 2.3.6 1H NMR spectrum of XIV (300 MHz, CDCl₃). The symbol * indicates the signal of adventitious H₂O protons.

Figure 2.3.6 Expansion of the 1H NMR spectrum (300 MHz, CDCl₃) of XIV in 1.4–4.2 ppm region. The symbol * indicates the signal of adventitious H₂O protons.

Figure 2.3.6 Expansion of the 1H NMR spectrum (300 MHz, CDCl₃) of XIV in 5.6–8.0 ppm region.

Figure 2.3.7 1H NMR spectrum of XV (300 MHz, CDCl₃). The symbol * indicates the signal of adventitious H₂O protons.

Figure 2.3.7 Expansion of the 1H NMR spectrum (300 MHz, CDCl₃) of XV in 2.8–4.2 ppm region.

Figure 2.3.7 Expansion of the 1H NMR spectrum (300 MHz, CDCl₃) of XV in 6.0–8.5 ppm region.
Contents

Figure 2.3.8 The $^1$H NMR spectrum (300 MHz, CDCl$_3$) of XVII. The symbol * indicates the signal of adventitious H$_2$O protons. 138

Figure 2.3.8 Expansion of the $^1$H NMR spectrum (300 MHz, CDCl$_3$) of XVII in 1.0–3.5 ppm region. The symbol * indicates the signal of adventitious H$_2$O protons. 139

Figure 2.3.8 Expansion of the $^1$H NMR spectrum (300 MHz, CDCl$_3$) of XVII in 5.0–8.0 ppm region. 140

Figure 2.3.9 $^{13}$C NMR spectrum of XIV (100.5 MHz, CDCl$_3$). 141

Figure 2.3.9 Expansion of the $^{13}$C NMR spectrum (100.5 MHz, CDCl$_3$) of XIV in 124–136 ppm region. 142

Figure 2.3.9 Expansion of the $^{13}$C NMR spectrum (100.5 MHz, CDCl$_3$) of XIV in 17–44 ppm region. 143

Figure 2.3.10 An ORTEP representation of XX at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity. Inset: The pseudo boat conformation of the six-membered “[C,N]Pt” ring. 147

Figure 2.3.11 An ORTEP representation of XXIII at the 50% probability level. Only the hydrogen atoms of the amino moieties are shown for clarity. 149

Figure 2.3.12 The ESI MS Mass Spectrum of XX. 153

Figure 2.3.12 Expansion of the ESI MS Mass Spectrum of XX. 154

Figure 2.3.13 $^1$H NMR spectrum of XX (300 MHz, CDCl$_3$). The symbol * indicates the signal of adventitious H$_2$O protons. 157

Figure 2.3.13 Expansion of the $^1$H NMR spectrum (300 MHz, CDCl$_3$) of XX in 3.0–8.5 ppm region. 158

Figure 2.3.14 $^{13}$C NMR spectrum (100.5 MHz, CDCl$_3$) of XX. 159

Figure 2.3.14 Expansion of the $^{13}$C NMR spectrum (100.5 MHz, CDCl$_3$) of XX in 106–136 ppm region. 160

Figure 2.3.14 Expansion of the $^{13}$C NMR spectrum (100.5 MHz, CDCl$_3$) of XX in 44–57 ppm region. 161

Figure 2.3.15 $^1$H NMR spectrum (400 MHz, CDCl$_3$) of one of the crystals of XXI. 162

Figure 2.3.15 Expansion of the $^1$H NMR spectrum (400 MHz, CDCl$_3$) of one of the crystals of XXI. 163
one of the crystals of XXI in 1.9–3.4 ppm region.

Figure 2.3.15 Expansion of the $^1$H NMR spectrum (400 MHz, CDCl$_3$) of one of the crystals of XXI in 6.7–7.9 ppm region.

Figure 2.3.16 $^{13}$C NMR spectrum (100.5 MHz, CDCl$_3$) of XXIII.

Figure 2.3.16 Expansion of the $^{13}$C NMR spectrum (100.5 MHz, CDCl$_3$) of XXIII in 124–136 ppm region.

Figure 2.3.16 Expansion of the $^{13}$C NMR spectrum (100.5 MHz, CDCl$_3$) of XXIII in 14–44 ppm region.

Supporting Information

Figure S2.1.1 Packing diagram illustrating C–H···Br and C–H···Cl hydrogen bonding observed in the crystal lattice of III viewed along $a$-axis.

Figure S2.1.2 Packing diagram illustrating C–H···Br and N–H···Br hydrogen bonding observed in the crystal lattice of VI viewed along $a$-axis.

Figure S2.2.1 Packing diagram illustrating N–H···N hydrogen bonding observed in the crystal lattice of LH$_2^{2,5$-xylyl} viewed along $a$-axis.

Figure S2.2.2 Packing diagram illustrating C–H···Cl and N–H···Cl hydrogen bonding observed in the crystal lattice of IX·CHCl$_3$ viewed along $a$-axis.

Figure S2.2.3 Packing diagram illustrating N–H···O and C–H···O hydrogen bonding observed in the crystal lattice of X viewed along $a$-axis.

Figure S2.2.4 Packing diagram illustrating N–H···O hydrogen bonding observed in the crystal lattice of XI viewed along $a$-axis.

Figure S2.2.5 Packing diagram illustrating N–H···O hydrogen bonding observed in the crystal lattice of XII viewed along $a$-axis.

Figure S2.2.6 Packing diagram illustrating N–H···O and C–H···F hydrogen bonding observed in the crystal lattice of XII viewed along $a$-axis.

Figure S2.3.1 Packing diagram illustrating C–H···Cl hydrogen bonding observed in the crystal lattice of XIV viewed along $a$-axis.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S2.3.2</td>
<td>Packing diagram illustrating C–H···O hydrogen bonding observed in the crystal lattice of XIV viewed along a-axis.</td>
<td>225</td>
</tr>
<tr>
<td>Figure S2.3.3</td>
<td>Packing diagram illustrating C–H···O hydrogen bonding observed in the crystal lattice of XIV viewed along a-axis.</td>
<td>226</td>
</tr>
<tr>
<td>Figure S2.3.4</td>
<td>Packing diagram illustrating C–H···Cl hydrogen bonding observed in the crystal lattice of XV.</td>
<td>227</td>
</tr>
<tr>
<td>Figure S2.3.5</td>
<td>Packing diagram illustrating C–H···Cl hydrogen bonding observed in the crystal lattice of XV.</td>
<td>228</td>
</tr>
<tr>
<td>Figure S2.3.6</td>
<td>Packing diagram illustrating C–H···Cl hydrogen bonding observed in the crystal lattice of XVII.</td>
<td>229</td>
</tr>
<tr>
<td>Figure S2.3.7</td>
<td>Packing diagram illustrating C–H···O hydrogen bonding observed in the crystal lattice of XVII.</td>
<td>230</td>
</tr>
<tr>
<td>Figure S2.3.8</td>
<td>Packing diagram illustrating C–H···O, C–H···Cl and N–H···Cl hydrogen bonding observed in the crystal lattice of XVIII.</td>
<td>231</td>
</tr>
<tr>
<td>Figure S2.3.9</td>
<td>Packing diagram illustrating C–H···Cl hydrogen bonding observed in the crystal lattice of XVIII.</td>
<td>232</td>
</tr>
<tr>
<td>Figure S2.3.10</td>
<td>$^{195}$Pt{¹H} NMR spectrum of XIV (85.5 MHz, CDCl₃).</td>
<td>233</td>
</tr>
<tr>
<td>Figure S2.3.11</td>
<td>Expansion of the $^{195}$Pt{¹H} NMR spectrum (85.5 MHz, CDCl₃) of XIV in –2840 to –3070 ppm region.</td>
<td>234</td>
</tr>
<tr>
<td>Figure S2.3.11</td>
<td>$^{195}$Pt{¹H} NMR spectrum of XV (85.5 MHz, CDCl₃).</td>
<td>235</td>
</tr>
<tr>
<td>Figure S2.3.12</td>
<td>Expansion of the $^{195}$Pt{¹H} NMR spectrum (85.5 MHz, CDCl₃) of XV in –2600 to –2860 ppm region.</td>
<td>236</td>
</tr>
<tr>
<td>Figure S2.3.12</td>
<td>$^{195}$Pt{¹H} NMR spectrum of XVI (85.5 MHz, CDCl₃).</td>
<td>237</td>
</tr>
<tr>
<td>Figure S2.3.13</td>
<td>Expansion of the $^{195}$Pt{¹H} NMR spectrum (85.5 MHz, CDCl₃) of XVI in –2580 to –3240 ppm region.</td>
<td>238</td>
</tr>
<tr>
<td>Figure S2.3.13</td>
<td>$^{195}$Pt{¹H} NMR spectrum of XVII (85.5 MHz, CDCl₃).</td>
<td>239</td>
</tr>
<tr>
<td>Figure S2.3.14</td>
<td>Expansion of the $^{195}$Pt{¹H} NMR spectrum (85.5 MHz, CDCl₃) of XVII in –2740 to –3170 ppm region.</td>
<td>240</td>
</tr>
<tr>
<td>Figure S2.3.14</td>
<td>$^{195}$Pt{¹H} NMR spectrum of XVIII (85.5 MHz, CDCl₃).</td>
<td>241</td>
</tr>
<tr>
<td>Figure S2.3.15</td>
<td>Expansion of the $^{195}$Pt{¹H} NMR spectrum (85.5 MHz, CDCl₃) of XVIII in –2780 to –3000 ppm region.</td>
<td>242</td>
</tr>
<tr>
<td>Figure S2.3.15</td>
<td>Packing diagram illustrating C–H···Cl hydrogen bonding</td>
<td>243</td>
</tr>
</tbody>
</table>
observed in the crystal lattice of XX. Hydrogen bond parameters (Å and deg).

Figure S2.3.16 Packing diagram illustrating N–H···O, C–H···O and C–H···Cl hydrogen bonding observed in the crystal lattice of XX.

Figure S2.3.17 Packing diagram illustrating C–H···Cl hydrogen bonding observed in the crystal lattice of XXIII.

Figure S2.3.18 Packing diagram illustrating N–H···O and C–H···O hydrogen bonding observed in the crystal lattice of XXIII.

Figure S2.3.19 $^{195}$Pt{\textsuperscript{1}H} NMR spectrum of XX (85.5 MHz, CDCl$_3$).

Figure S2.3.19 Expansion of the $^{195}$Pt{\textsuperscript{1}H} NMR spectrum (85.5 MHz, CDCl$_3$) of XX in –2600 to –2860 ppm region.

Figure S2.3.20 $^{195}$Pt{\textsuperscript{1}H} NMR spectrum of XXI (85.5 MHz, CDCl$_3$).

Figure S2.3.20 Expansion of the $^{195}$Pt{\textsuperscript{1}H} NMR spectrum (85.5 MHz, CDCl$_3$) of XXI in –2450 to –3150 ppm region.

Figure S2.3.21 $^{195}$Pt{\textsuperscript{1}H} NMR spectrum of XXII (85.5 MHz, CDCl$_3$).

Figure S2.3.21 Expansion of the $^{195}$Pt{\textsuperscript{1}H} NMR spectrum (85.5 MHz, CDCl$_3$) of XXII in –1100 to –5000 ppm region.

Figure S2.3.22 $^{195}$Pt{\textsuperscript{1}H} NMR spectrum of XXIII (85.5 MHz, CDCl$_3$).

Figure S2.3.22 Expansion of the $^{195}$Pt{\textsuperscript{1}H} NMR spectrum (85.5 MHz, CDCl$_3$) of XXIII in –2500 to –3020 ppm region.

Figure S2.3.23 $^{195}$Pt{\textsuperscript{1}H} NMR spectrum of XXIV (85.5 MHz, CDCl$_3$).

Figure S2.3.23 Expansion of the $^{195}$Pt{\textsuperscript{1}H} NMR spectrum (85.5 MHz, CDCl$_3$) of XXIV in –2500 to –3500 ppm region.
Chapter 1
Table 1.1.1 Various Possible Conformers of $\text{LH}_2^{2\text{-toly}}$, $\text{LH}_2^{2\text{-anisy}}$, and $\text{LH}_2^{2\text{-xyly}}$ 4
Table 1.1.2 Conformations of Known Sym $N,N',N''$-Triarylguanidines 5

Chapter 2
Section 2.2
Table 2.1.1 Selected Bond Distances (Å) and Bond Angles (deg.) for Palladacycle I 56
Table 2.1.2 Selected Bond Distances (Å) and Bond Angles (deg.) for Palladacycle II. 57
Table 2.1.3 Selected Bond Distances (Å) and Bond Angles (deg.) for Palladacycle III. 63
Table 2.1.4 Selected Bond Distances (Å) and Bond Angles (deg) for Palladacycle IV. 65
Table 2.1.5 Selected Bond Distances (Å) and Bond Angles (deg) for Palladacycle V. 65
Table 2.1.6 Selected Bond Distances (Å) and Bond Angles (deg) for Palladacycle VI. 69
Table 2.1.7 Geometric Parameters of the CN$_3$ Core in Palladacycles IV–VI. 69
Table 2.1.8 Selected FT-IR Spectral Data for Palladacycles IV–VII (KBr, cm$^{-1}$) 70

Section 2.2
Table 2.2.1 Selected Bond Distances (Å) and Bond Angles (deg.) for $\text{LH}_2^{2\text{-xyly}}$. 80
Table 2.2.2 Selected Bond Distances (Å) and Bond Angles (deg.) of 1:2 Adduct IX. 87
Table 2.2.3 Selected Bond Distances (Å) and Bond Angles (deg.) of 1:2 Adduct X. 87
Table 2.2.4 Selected Bond Distances (Å) and Bond Angles (deg.) of 1:2 Adduct XI. 87
Table 2.2.5 Selected Bond Distances (Å) and Bond Angles (deg.) of 1:2 88
Adduct \textbf{XII}. 

Table 2.2.6 Salient Structural Features of Adducts \textbf{IX–XII.} \hspace{1cm} 90

Table 2.2.7 Selected IR Data for Adducts \textbf{IX–XII} (KBr, cm$^{-1}$). \hspace{1cm} 92

Table 2.2.8 Non-bonded H···H contacts (Å) between NH protons and CH$_3$ protons in \textbf{IX.} \hspace{1cm} 92

Table 2.2.9 Non-bonded H···H contacts (Å) between NH protons and CH$_3$ protons in \textbf{XI} \hspace{1cm} 101

Table 2.2.10 Selected Bond Distances (Å) for the Adduct \textbf{XIII} Measured at 120, 150 and 273 K. \hspace{1cm} 105

Table 2.2.11 Selected Bond Angles (deg.) for the Adduct \textbf{XIII} Measured at 120, 150 and 273 K. \hspace{1cm} 105

Table 2.2.12 Heck-Mizoroki coupling reactions catalysed by adducts \textbf{IX–XIII.} \hspace{1cm} 110

\textbf{Section 2.3}

Table 2.3.1 Selected Bond Distances (Å) and Bond Angles (deg.) for 1:1 Adduct \textbf{XIV.} \hspace{1cm} 123

Table 2.3.2 Selected Bond Distances (Å) and Bond Angles (deg.) for 1:1 Adduct \textbf{XV.} \hspace{1cm} 123

Table 2.3.3 Selected Bond Distances (Å) and Bond Angles (deg.) for 1:1 Adduct \textbf{XVII.} \hspace{1cm} 124

Table 2.3.4 Selected Bond Distances (Å) and Bond Angles (deg.) for 1:1 Adduct \textbf{XVIII.} \hspace{1cm} 124

Table 2.3.5 $\Delta_{CN}$, $\Delta_{CN'}$ (Å), and $\rho$ parameters for Adducts \textbf{XIV, XV, XVII, XVIII} and Guanidines. \hspace{1cm} 126

Table 2.3.6 Selected Bond Distances (Å) and Bond Angles (deg.) for Platinum(II) Salt \textbf{XIX.} \hspace{1cm} 128

Table 2.3.7 Selected FT-IR Data for Adducts \textbf{XIV–XVIII} (KBr, cm$^{-1}$) \hspace{1cm} 128

Table 2.3.8 Selected $m/z$ values for Adducts \textbf{XIV–XVIII} obtained from ESI-MS$^+$ Data. Intensity (%) is given in parenthesis. \hspace{1cm} 129

Table 2.3.9 Selected Bond Distances (Å) and Bond Angles (deg.) for Platinacycle \textbf{XX.} \hspace{1cm} 148

Table 2.3.10 Selected Bond Distances (Å) and Bond Angles (deg.) for Substitution Product \textbf{XXIII} \hspace{1cm} 150
Table 2.3.11 Selected FT-IR Data for Platinacycles XX–XXII (KBr, cm$^{-1}$) 151
Table 2.3.12 Selected m/z values of Platinacycles XX–XXII obtained from ESI-MS$^+$ Data. Intensity (%) is given in parenthesis. 152

Chapter 3
Table 3.4.1 Crystal Data and Structure Refinement for I, II, III, IV and V 211
Table 3.4.2 Crystal Data and Structure Refinement for VI, IX, X, XI and XII 212
Table 3.4.3 Crystal Data and Structure Refinement for XIII, XIV, XV, XVII and XVIII 213
Table 3.4.4 Crystal Data and Structure Refinement for XIX, XX and XXIII 214
### LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>Aryl group</td>
</tr>
<tr>
<td>aq</td>
<td>Aqueous</td>
</tr>
<tr>
<td>br</td>
<td>Broad</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide (Me₂S(O))</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential Scanning Calorimetry</td>
</tr>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>Et</td>
<td>Ethyl group (CH₂CH₃)</td>
</tr>
<tr>
<td>Equiv</td>
<td>Equivalent</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>'Pr</td>
<td>Isopropyl group (CH(CH₃)₂)</td>
</tr>
<tr>
<td>L</td>
<td>Ligand</td>
</tr>
<tr>
<td>Lit</td>
<td>Literature</td>
</tr>
<tr>
<td>Me</td>
<td>Methyl (CH₃)</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>m</td>
<td>Multiplet</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>n-BuLi</td>
<td>n-Butyllithium (CH₃(CH₂)₂Li)</td>
</tr>
<tr>
<td>OAc</td>
<td>Acetato (CH₃C(O)O)</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl (C₆H₅)</td>
</tr>
<tr>
<td>Py</td>
<td>Pyridine (C₅H₅N)</td>
</tr>
<tr>
<td>q</td>
<td>Quartet</td>
</tr>
<tr>
<td>R</td>
<td>Alkyl or aryl group</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetato (CF₃C(O)O)</td>
</tr>
<tr>
<td>S</td>
<td>Solvent</td>
</tr>
<tr>
<td>s</td>
<td>Singlet</td>
</tr>
<tr>
<td>'Bu</td>
<td>tert-butyl ((CH₃)₃C)</td>
</tr>
<tr>
<td>t</td>
<td>Triplet</td>
</tr>
<tr>
<td>VT</td>
<td>Variable Temperature</td>
</tr>
</tbody>
</table>