Contents

Chapter 1 Introduction 1

1.1 Biomolecules 1
 1.1.1 Carbohydrate 1
 1.1.2 Proteins 2
 1.1.3 Carbohydrate-Protein Interaction 3
 1.1.4 Biophysical Methods X-ray and NMR 4

1.2 Databases 6
 1.2.1 Swiss-Prot 7
 1.2.2 Protein Data Bank (PDB) 8
 1.2.3 Complex Carbohydrate Structural Database (CCSD) 10
 1.2.4 Three Dimensional Structural Databases for Sialic acid containing Carbohydrates (3DSDSCAR) 12

1.3 Gangliosides 14

1.4 Botulinum Neurotoxin 18
 1.4.1 Three-dimensional structure of Botulinum Neurotoxin 19
 1.4.2 Mechanism of BoNT/B 23
 1.4.3 Binding Specificity of Botulinum Neurotoxin towards Gangliosides 25

1.5 Inhibitor Design 27
 1.5.1 Botulinum Neurotoxin as a drug target 28

1.6 Perspectives of the present study 29

Chapter 2 Software and Force Fields 31

2.1 Conformational analysis 31
 2.1.1 Conformational parameters 31

2.2 Molecular Modelling 33

2.3 Molecular Graphics 34
 2.3.1 Molscript 35
 2.3.2 Visual Molecular Dynamics 35
 2.3.3 Swiss-pdb Viewer 37
2.4 Molecular Mechanics

2.5 Functional form of Assisted Model Building with Energy Refinement (AMBER) force field

2.5.1 Energy Minimization Algorithms

2.6 Molecular Dynamics

2.6.1 Constrained Molecular Dynamics

2.6.2 Advantages of Molecular Dynamics

2.6.3 NAnoscale Molecular Dynamics (NAMD)

2.7 Molecular Mechanics-Poisson Boltzmann Surface Area (MM/PBSA)

Chapter 3 10ns Molecular Dynamics Simulation of Disialogangliosides oligo-GD1A and oligo-GD1B

3.1 Introduction

3.2 Materials and Methods

3.2.1 Molecular Dynamics of disialogangliosides in aqueous environment

3.3 Results and Discussion

3.3.1 Structural conformation of GD1A and GD1B

3.4 Conclusion

Chapter 4 Investigation of GD1A and GD1B complexed with Botulinum Neurotoxin/B- Molecular Modeling and Molecular Dynamics

4.1 Introduction

4.2 Materials and Methods

4.2.1 Molecular Modelling of Sialic acid (NeuNAc) residue into the binding site of BoNT/B

4.2.2 Modeling of GD1A and GD1A into the Binding Pocket of BoNT/B and dynamics of the GD1A and GD1B-BoNT/B complex

4.3 Results and Discussion

4.3.1 Molecular Modeling of NeuNAc inside the binding pocket of BoNT/B

4.3.2 Molecular Dynamics Simulation of BoNT/B-GD1A and BoNT/B-GD1B complex
4.4 Conclusion

Chapter 5 Conformational analysis of Trisialoganglioside GT1B and its interaction with Botulinum Neurotoxin/B-Molecular Modeling and Molecular Dynamics study

5.1 Introduction
5.2 Materials and Methods
 5.2.1 Software and Force Field
 5.2.2 Molecular Modelling of Sialic acid and GT1B into the binding pocket of BoNT/B
5.3 Results and Discussion
 5.3.1 Spatial flexibility of Glycosidic Torsions in GT1B
 5.3.2 Conformations of GT1B in the trajectory
 5.3.3 Molecular Dynamics Simulation on BoNT/B-GT1B complex
5.4 Conclusion

Chapter 6 Sialic acid analogues as inhibitors to clostridium Botulinum Neurotoxin/B: Structure-based Approach

6.1 Introduction
6.2 Materials and Methods
 6.2.1 Sialic acid analogues structure
 6.2.2 Modeling/Docking of Sialic acid analogues into the active site of BoNT/B
 6.2.3 Molecular Dynamics of the BoNT/B-Sialic acid analogue complexes
6.3 Results and Discussion
 6.3.1 BoNT/B- Methyl2αSialic acid (Compound 1) complex
 6.3.2 BoNT/B-2-Methyl Sialic acid (Compound 2) complex
 6.3.3 BoNT/B- Amide Sialic acid (Compound 3) complex
 6.3.4 BoNT/B-4-Ester Sialic acid (Compound 4) complex
 6.3.5 BoNT/B-4-O-acetyl Sialic acid (Compound 5) complex
 6.3.6 BoNT/B-5-azido 5-amino Sialic acid (Compound 6) complex
 6.3.7 BoNT/B- 7-O-acetyl, 8-O-acetyl, 9-O-acetyl, 9-azido, 9-deamino 9-deoxy and 9-n glycine sialic acid (Compound 7- Compound 12) complexes
6.4 Molecular Dynamics of Sialic acid analogue compounds-BoNT/B complexes 126

6.4.1 Molecular Dynamics simulation of
BoNT/B-4-O-acetyl sialic acid complex 127

6.4.2 Molecular Dynamics simulation of
BoNT/B-4-O-acetyl sialic acid complex 130

6.5 Conclusion 132

Chapter 7 Summary and Conclusion 133