List of Figures

1.1 3D Surface Reconstruction for face images .. 5
1.2 Short taxonomy of shape acquisition methods 6
1.3 Geometry of stereo vision system .. 11
1.4 Epipolar geometry ... 12
1.5 Flow-diagram of Stereo Vision System .. 14
1.6 Stereo Image Rectification ... 15
1.7 Camera Calibration System ... 17
1.8 Calibrated Stereo Image Rectification (a) and (b) Original Image pair; (c)
 and (d) Rectified Image pair (courtesy Fusiello et al.,2000) 19
1.9 Uncalibrated Stereo Image Rectification (a) and (b) Original Image pair; (c)
 and (d) Rectified Image pair (courtesy Fusiello et al.,2008) 20
1.10 Stereo Correspondence ... 21
1.11 Generalized block diagram of a stereo correspondence algorithm 21
1.12 Diversity of stereo methods division into local and global methods 22
1.13 Area-Based Stereo Matching ... 25
1.14 Disparity map obtained on middlebury database; (a) and (b) left and right
 stereo image pairs; (c) disparity map computed using SAD and (d) disparity
 map computed using NCC ... 26
1.15 Block diagram of Triangulation principle ... 27
1.16 Importance of corners and junctions in visual recognition and an image ex-
 ample with interest points provided by a corner detector (Courtesy of Tinne
 Tuyltelaaers et al.) ... 29
1.17 Detected features in images ... 31
1.18 A schematic representation of Lowes [86] Scale Invariant Feature Transform (SIFT). Gradient orientations and magnitudes are computed at each pixel and then weighted by a Gaussian falloff (blue circle). A weighted gradient orientation histogram is then computed in each subregion, using trilinear interpolation. ... 35

1.19 The Gradient Location-Orientation Histogram (GLOH) descriptor uses log-polar bins instead of square bins to compute orientation histograms (Mikolajczyk and Schmid 2005) ... 36

1.20 Feature matching results ... 38

1.21 Underwater laser imaging (http://www.3datdepth.com) 39

1.22 Underwater sonar imaging (http://oceaneplorer.noaa.gov) 41

1.23 Underwater stereo camera setup (http://webee.technion.ac.il) 43

1.24 Underwater optical imaging using stereo camera in deep ocean (Courtesy Yoav Y. Schechner) ... 44

1.25 Stereo camera setup .. 46

1.26 Underwater stereo test images: first row - dataset1; second row - dataset2; third row - dataset3 ... 47

1.27 Flow Diagram of the Thesis .. 48

2.1 Degraded underwater images which are blurred, hazed, affected by non-uniform illumination and sunlight flicker (http://webee.technion.ac.il) 52

2.2 Components of light propagating in a underwater environment: direct component (-), light ray which is reflected by an objects surface (···) and the backscattered component (─ · · · ◁), the light scattered by the medium. (courtesy Erickson Nascimento et al.) .. 53

2.3 Subbands of the 2-D orthogonal wavelet transform 60

2.4 The Result of 2D wavelet decomposition of underwater image at level 3 61

2.5 Underwater test images .. 68

2.6 First column: original image, second column: after homomorphic filtering, third column: after wavelet denoising, fourth column: after bilateral filtering, last column: after contrast equalization .. 69
2.7 Edge detection results on four images; First row: edge detection results on original images, Second row: edge detection results on preprocessed images 70

2.8 Gradient magnitude histogram of the four images; Red line: the gradient magnitude histogram of the original image, Green line: the gradient magnitude histogram of the preprocessed image 70

2.9 Comparison of our approach with Bazeille approach [9]; first row - our approach, second row - Stephane Bazeille approach .. 71

3.1 The flow diagram of our approach .. 79

3.2 Comprehensive color normalized images 81

3.3 Disparity Map using dataset1, dataset2 and dataset3: first column - SAD; second column - SSD; third column - NCC; fourth column - ZNCC; fifth column - Our approach using window size 5×5 .. 81

3.4 Disparity Map for dataset1, dataset2 and dataset3 computed using our approach (AWCC) with different window-size: first column - 5×5; second column - 7×7; third column - 9×9; fourth column - 11×11 82

3.5 Disparity Map computed using our approach for image blur variation; first column - left image, second column - right image with blur variation, third column - obtained disparity map .. 82

3.6 Disparity Map computed using our approach for image illumination variation; first column - left image, second column - right image with illumination variation, third column - obtained disparity map .. 83

4.1 Example of a directed capacitated graph. Edge costs are reflected by their thickness. A similar graph-cut construction was first used in vision by Greig et al. [48] for binary image restoration .. 92

4.2 Disparity Map computed for MRF-BP + Graph Cuts on three datasets: first column - left image; second column - right image; third column - disparity map .. 95

4.3 Disparity Map computed using our approach for blur variation; first column - left image, second column - right image with blur variation, third column - disparity map .. 96
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Disparity Map computed using our approach for illumination variation; first column - left image, second column - right image with illumination variation, third column - disparity map</td>
</tr>
<tr>
<td>4.5</td>
<td>Disparity map results for Scenario I: first column - left image; second column - right image; third column - AWCC; fourth column - Graph Cuts</td>
</tr>
<tr>
<td>4.6</td>
<td>Disparity map results for Scenario II: first column - left image; second column - right image; third column - AWCC; fourth column - Graph Cuts</td>
</tr>
<tr>
<td>4.7</td>
<td>Disparity map results for Scenario III: first column - left image; second column - right image; third column - AWCC; fourth column - Graph Cuts</td>
</tr>
<tr>
<td>4.8</td>
<td>Disparity map Comparison of Scenerio I, II and II: first column - CN + Graph Cuts; second column - Image Enhancement + Graph Cuts; third column - MRF-BP + Graph Cuts</td>
</tr>
<tr>
<td>4.9</td>
<td>Disparity map computed using graph cuts: first column - original images; second column - color corrected images</td>
</tr>
<tr>
<td>5.1</td>
<td>The flow diagram of proposed method for 3D Surface Reconstruction</td>
</tr>
<tr>
<td>5.2</td>
<td>An image in (a) is a set of pixels P with observed intensities I_p for each $p \in P$. A labeling L is shown in (b) assigns some label $L_p \in {0,1,2}$ to each pixel $p \in P$. Such labels can represent depth (in stereo), object index (in segmentation), original intensity (in image restoration), or other pixel properties. Thick lines in (b) show labeling discontinuities between neighboring pixels. (Courtesy Yuri Boykov and Vladimir Kolmogorov)</td>
</tr>
<tr>
<td>5.3</td>
<td>Representation of triangulation principle</td>
</tr>
<tr>
<td>5.4</td>
<td>Color corrected underwater stereo images using MRF-BP for dataset1, dataset2 and dataset3 respectively</td>
</tr>
<tr>
<td>5.5</td>
<td>First and second column: Underwater rectified stereo images for dataset1, dataset2 and dataset3 respectively</td>
</tr>
<tr>
<td>5.6</td>
<td>Disparity map computed using graph cuts for dataset1, dataset2 and dataset3 respectively</td>
</tr>
<tr>
<td>5.7</td>
<td>Textured depth maps of dataset1, dataset2 and dataset3 respectively</td>
</tr>
<tr>
<td>5.8</td>
<td>Triangular mesh created for smooth depth map of dataset1, dataset2 and dataset3 respectively</td>
</tr>
</tbody>
</table>
5.9 3D surface model with texture for dataset1, dataset2 and dataset3 respectively 118
5.10 3D surface model at different views of dataset1 (first row), dataset2 (second row) and dataset3 (third row) respectively 119
5.11 Scenario I: 3D surface model for dataset1, dataset2 and dataset3 respectively 120
5.12 Scenario II: 3D surface model for dataset1, dataset2 and dataset3 respectively 120

6.1 The blurred images at different scales, and the computation of the Difference-of-Gaussian images ... 130
6.2 Local extrema detection, the pixel marked X is compared against its 26 neighbors in a $3 \times 3 \times 3$ neighborhood that spans adjacent DoG images 130
6.3 Underwater normalized and rectified stereo images: first row - dataset1; second row - dataset2; third row - dataset3 135
6.4 Detected interest points in rectified left image of dataset1, dataset2 and dataset3 respectively using SIFT (DoG) .. 135
6.5 Correspondences computed for dataset1, dataset2 and dataset3. The red colored ‘*’ marks correspond to the interest points in the left image, while blue colored ‘*’ marks are their matchings in the right image 135
6.6 Matched feature points for dataset1, dataset2 and dataset3 respectively . 136
6.7 Stereo images with blur variation; first column - left image, second column - right image with blur variation ... 137
6.8 Stereo images with illumination variation; first column - left image, second column - right image with illumination varied 138

7.1 The first two images represent the discretised Gaussian second order partial derivative in y (L_{yy}) and xy direction (L_{xy}) respectively. The last two images represent the approximation for the second order Gaussian partial derivative in y (D_{yy}) and xy direction (D_{xy}). The gray regions assumed to be zero. ... 147
7.2 Graphical representation of the filter side lengths for three different octaves. The logarithmic horizontal axis represents the scales. Note that the octaves are overlapping in order to cover all possible scales seamlessly 148
7.3 LBP and CS-LBP features for a neighborhood of 8 pixels 149
List of Figures

7.4 Enhanced Underwater Images (left image and right image): first row - dataset1; second row - dataset2; third row - dataset3 151

7.5 Feature detected using our approach (SURF) for left image of dataset1, dataset2 and dataset3 respectively 152

7.6 Blur variation for dataset1, dataset2 and dataset3: (a) left image (b) right image with blur radius 15 ... 153

7.7 Blur Radius v/s Repeatability (a) dataset1 (b) dataset2 and (c) dataset3 . 154

7.8 Illumination variation for dataset1, dataset2 and dataset3: (a) left image, (b) right image with illumination varied using Photoshop 155

7.9 Scale variation for dataset1, dataset2 and dataset3: (a) left image (b) right image with scale variation 1.2 156

7.10 Scale Variation v/s Repeatability (a) dataset1, (b) dataset2 and (c) dataset3 156

7.11 Rotation angle variation for dataset1, dataset2 and dataset3: (a) left image (b) right image with rotation angle 10 degree 157

7.12 Rotation Angle v/s Repeatability (a) dataset1, (b) dataset2 and (c) dataset3 158

7.13 Comparison of proposed LBP-SURF with SIFT and SURF for dataset1 (left), dataset2 (center) and dataset3 (right) 159

7.14 Comparison of proposed LBP-SURF with Original Image (Before Preprocessing) and Enhanced Images (After Preprocessing) for dataset1 (left), dataset2 (center) and dataset3 (right) 159
List of Tables

2.1 The Comparison of four wavelet filter banks based on PSNR (dB) 68
2.2 The Comparison of five wavelet shrinkage functions based on PSNR (dB) 68
2.3 The Contrast of the Original image $C(I)$ and the enhanced images using our approach $C(I_{our})$ and Bazeille et al. approach $C(I_{ste})$.. 69

4.1 Comparison of processing time for combination of image preprocessing methods with Graph Cuts based stereo matching 100

5.1 Comparison of processing time for combination of Scenario I and Scenario II 121

6.1 Comparison of feature detection methods for comprehensive color normalized images of dataset1, dataset2 and dataset3 .. 136
6.2 Comparison of feature detection methods for blur variation 138
6.3 Comparison of feature detection methods for illumination variation 139
6.4 *Recall* and *Precision* values for feature matching of dataset1, dataset2 and dataset3 .. 140

7.1 Comparison of feature detectors for dataset1, dataset2 and dataset3 152
7.2 Comparison of Feature Detector with Illumination Variation for dataset1, dataset2 and dataset3 ... 155