Conclusion
Conclusion

Clearly clinical microbiologists now recognised that the organisms showing these biofilm modes of life are responsible for a variety of persistent infections that respond poorly to conventional antibiotic chemotherapy. The failure of conventional culture techniques to predict antibiotic susceptibilities of biofilm communities, long-term treatment of biofilm-related infections, acquiring specific resistance to the drug because of unique biofilm physiology and efficient horizontal gene transfer necessitate means of current antibiotic therapy improvement. Genomics research which focuses on identification of new targets for inhibition, translating genomic information into reasonable targets, and then identifying inhibitors of the new targets that will be deliverable to the appropriate site within the bacterium has proved to be a more unapproachable challenge than first imagined.

Though the direct lytic phage treatment met only limited success, the obtained results are encouraging in the sense that the phage—biofilm-forming bacteria binding can be explored for developing efficient antimicrobial delivery nanoflatform. Nanoparticles are no doubt the promising agents for targeting biofilm bacteria. These nanoparticles if synthesised through conventional chemical process, the likely chemical residues on nanoparticles may interact with biological systems as well as the antibacterial effects of antimicrobials. However, synthesis of nanoparticles using plant extract can potentially get rid of this problem by making the nanoparticles more biocompatible, the antimicrobial capping phytochemical may boost the efficiency so we used this line of attack for this present investigation. At this moment in time, we have predicted the reason for these developments and the reason for these differences. A thorough investigation on this and further development may in future results in an efficient antibiofilm agent which can aid solving many problems in the medical world.

A line of attack based on biofilm removal presents a unique commercial opportunity in that is represents a novelty from the traditional emphasis on disinfectants that kill microorganisms in the biofilm. No doubt, the unearthing of new biofilm control strategies based on the use of biological-based solutions with elevated antimicrobial activity and specificity seem to be a step ahead in overcoming the
biofilm resistance issue. As a whole, much more research is needed before we can realize effective prevention and treatment of biofilmic infections, biofilm related device infections caused by these challenging pathogens. This must be the prime goal of and driving force behind future efforts, as it can be expected that biofilm and foreign material-associated infections will gain even more importance than today.