CONTENTS

Introduction ... 1

Chapter 1: Review of Literature .. 11

1.1 Food losses due to insect pests...11
1.2 Challenges of insect invaders...11
1.3 Agricultural trade ..12
1.3.1 Role of quarantine regulations in agriculture trade
1.4 System approaches as phytosanitary measures.................................14
1.4.1 Preharvest measures
1.4.2 Postharvest measures
1.4.3 Probit 9 treatments
1.4.4 Less-than-Probit 9 treatments: Alternative approaches
1.5 Phytosanitary treatments ...17
1.5.1 Ionizing radiation as a phytosanitary treatment
1.5.2 Radiation sources
1.5.3 Mode of action of radiation in insects
1.5.4 Radioresistance in insect orders
1.5.5 Phytosanitary irradiation treatment
1.5.6 History of phytosanitary irradiation (PI)
1.5.7 Application of phytosanitary irradiation
1.5.8 Measure of efficacy for phytosanitary irradiation
1.5.9 Generic phytosanitary treatment
1.5.10 Development of specific and generic treatments of insects within taxon
1.6 Mealybug (Homoptera: Pseudococcidae) ... 40
1.6.1 Species diversity and host range
1.6.2 Food/crop losses
1.6.3 Morphology of mealybugs
1.6.4 Quarantine importance of mealybugs
1.7 Phenacoccus solenopsis Tinsley...42
1.8 Maconellicoccus hirsutus (Green).. 44
1.9 Paracoccus marginatus Williams and Granara de Willink48
Chapter 2: Materials and Methods

2.1 Culturing techniques
2.2 Environmental conditions for insect culture
2.3 Natural diet for insect culture
2.4 Rearing of mealybug species
2.4a Rearing of the solenopsis mealybug, *Phenacoccus solenopsis*
2.4b Rearing of the pink hibiscus mealybug, *Maconellicoccus hirsutus*
2.4c Rearing of the papaya mealybug, *Paracoccus marginatus*
2.5 Gamma radiation treatment
2.6 Bio-efficacy of gamma radiation on metamorphosis and development of pre-imaginal stages of mealybug species, *Phenacoccus solenopsis*, *Maconellicoccus hirsutus* and *Paracoccus marginatus*
2.6a Bio-efficacy of gamma radiation on eggs of *Maconellicoccus hirsutus* and *Paracoccus marginatus*
2.6b Bio-efficacy of gamma radiation on crawlers (N₁) and second instar nymph (N₂)
2.6c Bio-efficacy of gamma radiation on third instar female nymph (N₃-♀)
2.6d Bio-efficacy of gamma radiation on third and fourth instar male nymph (N₃-♂ and N₄-♂)
2.7 Bio-efficacy of gamma radiation on reproduction behaviour of pre-imaginal stages of mealybug species, *Phenacoccus solenopsis*, *Maconellicoccus hirsutus* and *Paracoccus marginatus*
2.8 Bio-efficacy of gamma radiation on reproduction behaviour of imaginal stages of mealybug species, *Phenacoccus solenopsis*, *Maconellicoccus hirsutus* and *Paracoccus marginatus*
2.9 Bio-efficacy of sub-sterilizing gamma radiation on imaginal stages of mealybug species, *P. solenopsis*, *M. hirsutus* and *P. marginatus*: F₁ progeny metamorphosis and development
2.10 Bio-efficacy of sub-sterilizing gamma radiation on imaginal stages of mealybug species, *P. solenopsis*, *M. hirsutus* and *P. marginatus*: F₁ reproduction behavior
Chapter 3: Efficacy of gamma radiation as phyto-sanitary treatment against the solenopsis mealybug, *Phenacoccus solenopsis*.................................101

RESULTS..105

3.1 Biology of the solenopsis mealybug, *Phenacoccus solenopsis* (Hemiptera; Pseudococcidae) ... 105

3.2 Effect of gamma radiation on pre-imaginal stages of mealybug species, the Solenopsis mealybug, *Phenacoccus solenopsis*: Development and Metamorphosis ..108

3.2a Effect of gamma radiation on development and survival of *Phenacoccus solenopsis* irradiated as crawlers

3.2b Effect of gamma radiation on development and survival of *Phenacoccus solenopsis* irradiated as second instar nymph (N₂)

3.2c Effect of gamma radiation on development and survival of *Phenacoccus solenopsis* irradiated as third instar male nymph (N₃-♂)

3.2d Effect of gamma radiation on development and survival of *Phenacoccus solenopsis* irradiated as third instar female nymph (N₃-♀)

3.2e Effect of gamma radiation on development and survival of *Phenacoccus solenopsis* irradiated fourth instar male nymph (N₄-♂)

3.3 Effective doses (viz. ED₅₀, ED₉₀ and ED₉₉₉) for inhibition in metamorphosis and check in adult formation in *Phenacoccus solenopsis*, irradiated in different pre-imaginal stages126
3.3a Effective doses for metamorphosis inhibition in *Phenacoccus solenopsis*, irradiated in different pre-imaginal stages

3.3b Effective doses for check in adult formation in *Phenacoccus solenopsis*, irradiated in different pre-imaginal stages

3.4 Effect of gamma radiation on pre-imaginal stages of mealybug species, the Solenopsis mealybug, *Phenacoccus solenopsis*: Reproduction behavior ...135

3.4a Effect of gamma radiation on reproduction behaviour of *Phenacoccus solenopsis* irradiated as crawlers

3.4b Effect of gamma radiation on reproduction behaviour of *Phenacoccus solenopsis* irradiated as second instar nymph (N₂)

3.4c Effect of gamma radiation on reproduction behaviour of *Phenacoccus solenopsis* irradiated as third instar female nymph (N₃-♀)

3.5 Effective doses (viz. ED₅₀, ED₉₀, and ED₉₉.₉) for inducing sterility in *Phenacoccus solenopsis*, irradiated in different pre-imaginal stages ..139

3.6 Effect of gamma radiation on imaginal stages of mealybug species, the Solenopsis mealybug, *Phenacoccus solenopsis*: P₁ reproduction behavior ..144

3.6a Effect of gamma radiation on reproduction behaviour of *Phenacoccus solenopsis* irradiated as 0-1d female adult

3.6b Effect of gamma radiation on reproduction behaviour of *Phenacoccus solenopsis* irradiated as pre-gravid (5-6d) female adult

3.6c Effect of gamma radiation on reproduction behaviour of *Phenacoccus solenopsis* irradiated as gravid (11-12d) female adult

3.7 Effective gamma doses (viz. ED₅₀, ED₉₀, and ED₉₉.₉) for inducing sterility in P₁ insect in *Phenacoccus solenopsis*, treated in different age groups of imaginal stages ..147

3.8 Effect of sub-sterilizing gamma irradiation on imaginal stages of mealybug species, the Solenopsis mealybug, *Phenacoccus solenopsis*: F₁ progeny metamorphosis and development ..150

3.8a Effect of gamma irradiation on development of F₁ progeny in *Phenacoccus solenopsis*, treated as freshly formed female (0-1 day old) with sub-sterilizing doses

3.8b Effect of gamma irradiation on development of F₁ progeny in *Phenacoccus solenopsis*, treated as pre-gravid female (5-6 day old) with sub-sterilizing doses
3.9 Effective sub-sterilizing irradiation doses (viz. ED$_{50}$, ED$_{90}$ and ED$_{99.9}$) for inhibition in F$_1$ adult formation in *Phenacoccus solenopsis* irradiated in different age groups of imaginal stages159

3.10 Effect of sub-sterilizing gamma irradiation on imaginal stages of mealybug species, the Solenopsis mealybug, *Phenacoccus solenopsis*: F$_1$ reproductive behavior ...160

3.10a Effect of gamma irradiation on reproductive performance of F$_1$ progeny in *Phenacoccus solenopsis*, treated as parent adult in freshly formed female (0-1 day old) with sub-sterilizing doses

3.10b Effect of gamma irradiation on reproductive performance of F$_1$ progeny in *Phenacoccus solenopsis*, treated as pre-gravid female adult (5-6 day old) with sub-sterilizing doses

3.10c Effect of gamma irradiation on reproductive performance of F$_1$ progeny in *Phenacoccus solenopsis*, treated as parent adult in gravid female (11-12 day old) with sub-sterilizing doses

3.11 Effective gamma doses (viz. ED$_{50}$, ED$_{90}$ and ED$_{99.9}$) for inducing sterility in F$_1$ adult in *Phenacoccus solenopsis* irradiated in different age groups of imaginal stages in parent generation170

3.12 Influence of temperature on radiation bioefficacy on the Solenopsis mealybug, *Phenacoccus solenopsis* ...170

3.12a Influence of temperature on radiation bioefficacy on crawlers

3.12b Influence of temperature on radiation bioefficacy on third instar female nymph (N$_3$-♀)

3.12c Influence of temperature on radiation bioefficacy on gravid (11-12 day old) female

3.13 Effective gamma doses (viz. ED$_{50}$, ED$_{90}$ and ED$_{99.9}$) for mortality in crawlers, N$_3$-female and gravid female, *Phenacoccus solenopsis* at different temperatures within 48hr post treatment ...185

3.13a Effective gamma doses for inducing mortality in crawlers at different temperatures within 48hr

3.13b Effective gamma doses for inducing mortality in N$_3$-female at different temperatures within 48hr

3.13c Effective gamma doses for inducing mortality in gravid female at different temperatures within 48hr.

DISCUSSION .. 197
Chapter 4: Efficacy of gamma radiation as phyto-sanitary treatment against the Pink hibiscus mealybug, *Maconellicoccus hirsutus* ... 211

RESULTS .. 215

4.1 Biology of the pink hibiscus mealy bug, *Maconellicoccus hirsutus* (order: Hemiptera; family: Pseudococcidae) ... 215

4.2 Effect of gamma radiation on pre-imaginal stages of mealybug species, the pink hibiscus mealy bug *Maconellicoccus hirsutus*: Development and metamorphosis .. 218

4.2a Effect of gamma radiation on development and survival of *Maconellicoccus hirsutus* irradiated as egg

4.2b Effect of gamma radiation on development and survival of *Maconellicoccus hirsutus* irradiated as crawlers (N₁)

4.2c Effect of gamma radiation on development and survival of *Maconellicoccus hirsutus* irradiated as second instar nymph (N₂)

4.2d Effect of gamma radiation on development and survival of *Maconellicoccus hirsutus* irradiated as third instar male nymph (N_{3-♂})

4.2e Effect of gamma radiation on development and survival of *Maconellicoccus hirsutus* irradiated as third instar female nymph (N_{3-♀})

4.2f Effect of gamma radiation on development and survival of *Maconellicoccus hirsutus* irradiated as fourth instar male nymph (N_{4-♂})

4.3 Effective doses (viz. ED₅₀, ED₉₀ and ED_{99.9}) for inhibition in metamorphosis and check in adult formation in *Maconellicoccus hirsutus*, irradiated in different pre-imaginal stages ... 243

4.3a Effective doses for metamorphosis inhibition in *Maconellicoccus hirsutus*, irradiated in different pre-imaginal stages

4.3b Effective doses for check in adult formation in *Maconellicoccus hirsutus*, irradiated in different pre-imaginal stages

4.4 Effect of gamma radiation on pre-imaginal stages of mealybug species, the Pink hibiscus mealybug, *Maconellicoccus hirsutus*: Reproduction behavior ... 249

4.4a Effect of gamma radiation on reproduction behaviour of *Maconellicoccus hirsutus* irradiated as eggs

4.4b Effect of gamma radiation on reproduction behaviour of *Maconellicoccus hirsutus* irradiated as crawlers
4.4c Effect of gamma radiation on reproduction behaviour of Maconellicoccus hirsutus irradiated as second instar nymph (N$_2$)

4.4d Effect of gamma radiation on reproduction behaviour of Maconellicoccus hirsutus irradiated as third instar male nymph (N$_3$-♂)

4.4e Effect of gamma radiation on reproduction behaviour of Maconellicoccus hirsutus irradiated as third instar female nymph (N$_3$-♀)

4.4f Effect of gamma radiation on reproduction behaviour of Maconellicoccus hirsutus irradiated as fourth instar male nymph (N$_4$-♂)

4.5 Effective doses (viz. ED$_{50}$, ED$_{90}$ and ED$_{99.9}$) for inducing sterility in the Pink hibiscus mealybug, irradiated in different pre-imaginal stages 260

4.6 Effect of gamma radiation on imaginal stages of mealybug species, the Pink hibiscus mealybug, Maconellicoccus hirsutus: P$_1$ reproduction behavior ... 260

4.6a Effect of gamma radiation on reproduction behaviour of Maconellicoccus hirsutus irradiated as 0-1d male adult

4.6b Effect of gamma radiation on reproduction behaviour of Maconellicoccus hirsutus irradiated as 0-1d female adult

4.6c Effect of gamma radiation on reproduction behaviour of Maconellicoccus hirsutus irradiated as pre-gravid (3-4d) female adult

4.6d Effect of gamma radiation on reproduction behaviour of Maconellicoccus hirsutus irradiated as gravid (6-7d) female adult

4.7 Effective gamma doses (viz. ED$_{50}$, ED$_{90}$ and ED$_{99.9}$) for inducing sterility in parent (P$_1$) generation of insect in Maconellicoccus hirsutus, treated in imaginal stages ... 271

4.8 Effect of sub-sterilizing gamma irradiation on imaginal stages of mealybug species, the Pink hibiscus mealybug, Maconellicoccus hirsutus: F$_1$ progeny metamorphosis and development .. 273

4.8a Effect of gamma irradiation on development of F$_1$ progeny in Maconellicoccus hirsutus, treated as freshly formed male (0-1 day old) with sub-sterilizing doses

4.8b Effect of gamma irradiation on development of F$_1$ progeny in Maconellicoccus hirsutus, treated as freshly formed female (0-1 day old) with sub-sterilizing doses

4.8c Effect of gamma irradiation on development of F$_1$ progeny in Maconellicoccus hirsutus, treated as pre-gravid female (3-4 day old) with sub-sterilizing doses
4.8d Effect of gamma irradiation on development of F\textsubscript{1} progeny in *Maconellicoccus hirsutus*, treated as gravid female (6-7 day old) with sub-sterilizing doses

4.9 Effective sub-sterilizing irradiation doses (viz. ED\textsubscript{50}, ED\textsubscript{90} and ED\textsubscript{99.9}) for inhibition in F\textsubscript{1} adult formation in *Maconellicoccus hirsutus* irradiated in different age groups of imaginal stages ... 283

4.10 Effect of sub-sterilizing gamma irradiation on imaginal stages of mealybug species, the Pink hibiscus mealybug, *Maconellicoccus hirsutus*: F\textsubscript{1} reproduction behavior ... 289

4.10a Effect of gamma irradiation on reproductive performance of F\textsubscript{1} progeny of *Maconellicoccus hirsutus*, treated as parent freshly formed male (0-1 day old) with sub-sterilizing doses

4.10b Effect of gamma irradiation on reproductive performance of F\textsubscript{1} progeny of *Maconellicoccus hirsutus*, treated as parent freshly formed female (0-1 day old) with sub-sterilizing doses

4.10c Effect of gamma irradiation on reproductive performance of F\textsubscript{1} progeny of *Maconellicoccus hirsutus*, treated as pre-gravid female adult (3-4 day old) with sub-sterilizing doses

4.10d Effect of gamma irradiation on reproductive performance of F\textsubscript{1} progeny of *Maconellicoccus hirsutus*, treated as parent gravid female (6-7 day old) with sub-sterilizing doses

4.11 Effective gamma doses (viz. ED\textsubscript{50}, ED\textsubscript{90} and ED\textsubscript{99.9}) for inducing sterility in F\textsubscript{1} adult in *Maconellicoccus hirsutus* irradiated in male and female imaginal stages of different age groups in parent generation 294

4.12 Influence of temperature on radiation bioefficacy on the Pink hibiscus mealybug, *Maconellicoccus hirsutus* .. 297

4.12a Influence of temperature on radiation bioefficacy on crawlers

4.12b Influence of temperature on radiation bioefficacy on third instar female nymph (N\textsubscript{3}-♀)

4.12c Influence of temperature on radiation bioefficacy on gravid (6-7 day old) female

4.13 Effective gamma doses (viz. ED\textsubscript{50}, ED\textsubscript{90} and ED\textsubscript{99.9}) for inducing mortality in crawlers, N\textsubscript{3}-female and gravid female, *Maconellicoccus hirsutus* at different temperatures within 48hr post treatment 308

4.13a Effective gamma doses for inducing mortality in crawlers at different temperatures within 48hr

4.13b Effective gamma doses for inducing mortality in N\textsubscript{3}-female at different temperatures within 48hr

4.13c Effective gamma doses for inducing mortality in gravid female at different temperatures within 48hr

DISCUSSION .. 324
Chapter 5: Efficacy of gamma radiation as phyto-sanitary treatment against the papaya mealybug, *Paracoccus marginatus* 341

RESULTS 345

5.1 Biology of the Papaya mealybug, *Paracoccus marginatus* (Order: Hemiptera; family: Pseudococcidae) 348

5.2 Effect of gamma radiation on pre-imaginal stages of mealybug species, the Papaya mealybug *Paracoccus marginatus*: Development and metamorphosis 373

5.2a Effect of gamma radiation on development and survival of *Paracoccus marginatus* irradiated as egg

5.2b Effect of gamma radiation on development and survival of *Paracoccus marginatus* irradiated as crawlers (N₁)

5.2c Effect of gamma radiation on development and survival of *Paracoccus marginatus* irradiated as second instar nymph (N₂)

5.2d Effect of gamma radiation on development and survival of *Paracoccus marginatus* irradiated as third instar male nymph (N₃-♂)

5.2e Effect of gamma radiation on development and survival of *Paracoccus marginatus* irradiated as third instar female nymph (N₃-♀)

5.2f Effect of gamma radiation on development and survival of *Paracoccus marginatus* irradiated as fourth instar male nymph (N₄-♂)

5.3 Effective doses (viz. ED₅₀, ED₉₀ and ED₉₉₉) for inhibition in metamorphosis and check in adult formation in *Paracoccus marginatus*, irradiated in different pre-imaginal stages 379

5.3a Effective doses for metamorphosis inhibition in *Paracoccus marginatus*, irradiated in different pre-imaginal stages

5.3b Effective doses for check in adult formation in *Paracoccus marginatus*, irradiated in different pre-imaginal stages

5.4 Effect of gamma radiation on pre-imaginal stages of mealybug species, the Papaya mealybug, *Paracoccus marginatus*: Reproduction behavior 387

5.4a Effect of gamma radiation on reproduction behaviour of *Paracoccus marginatus* irradiated as eggs

5.4b Effect of gamma radiation on reproduction behaviour of *Paracoccus marginatus* irradiated as crawlers
5.4c Effect of gamma radiation on reproduction behaviour of *Paracoccus marginatus* irradiated as second instar nymph (N₂)

5.4d Effect of gamma radiation on reproduction behaviour of *Paracoccus marginatus* irradiated as third instar male nymph (N₃-♂)

5.4e Effect of gamma radiation on reproduction behaviour of *Paracoccus marginatus* irradiated as third instar female nymph (N₃-♀)

5.4f Effect of gamma radiation on reproduction behaviour of *Paracoccus marginatus* irradiated as fourth instar male nymph (N₄-♂)

5.5 Effective doses (viz. ED₅₀, ED₉₀ and ED₉₉.₉) for inducing sterility in the Papaya mealybug, *Paracoccus marginatus* irradiated in different pre-imaginal stages...390

5.6 Effect of gamma radiation on imaginal stages of mealybug species, the Papaya mealybug, *Paracoccus marginatus*: P₁ reproduction behaviour...

5.6a Effect of gamma radiation on reproduction behaviour of *Paracoccus marginatus* irradiated as 0-1d male adult

5.6b Effect of gamma radiation on reproductive behaviour of *Paracoccus marginatus* irradiated as 0-1d female adult

5.6c Effect of gamma radiation on reproductive behaviour of *Paracoccus marginatus* irradiated as pre-gravid (3-4d) female adult

5.6d Effect of gamma radiation on reproductive behaviour of *Paracoccus marginatus* irradiated as gravid (6-7d) female adult

5.7 Effective gamma doses (viz. ED₅₀, ED₉₀ and ED₉₉.₉) for inducing sterility in parent (P₁) generation of *Paracoccus marginatus*, treated in imaginal stages...401

5.8 Effect of sub-sterilizing gamma irradiation on imaginal stages of mealybug species, the Papaya mealybug, *Paracoccus marginatus*: F₁ progeny metamorphosis and development ..403

5.8a Effect of gamma irradiation on development of F₁ progeny derived from *Paracoccus marginatus*, and crossed with gravid female treated as freshly formed male (0-1 day old) with sub-sterilizing doses

5.8b Effect of gamma irradiation on development of F₁ progeny derived from *Paracoccus marginatus*, treated as pre-gravid female (3-4 day old) with sub-sterilizing doses, and crossed with 0-1 day old male.
5.8c Effect of gamma irradiation on development of F₁ progeny derived from *Paracoccus marginatus*, treated as gravid female (6-7 day old) with sub-sterilizing doses, and crossed with 0-1 day old male

5.9 Effective sub-sterilizing irradiation doses (viz. ED₅₀, ED₉₀ and ED₉₉.₉) for inhibition in F₁ adult formation in *Paracoccus marginatus* irradiated in different age groups of imaginal stages..................413

5.10 Effect of sub-sterilizing gamma irradiation on imaginal stages of mealybug species, the Papaya mealybug, *Paracoccus marginatus*: F₁ reproduction behavior...419

5.10a Effect of gamma irradiation on reproductive performance of F₁ progeny of *Paracoccus marginatus*, treated as parent freshly formed male (0-1 day old) with sub-sterilizing doses

5.10b Effect of gamma irradiation on reproductive performance of F₁ progeny of *Paracoccus marginatus*, treated as parent freshly formed female (0-1 day old) with sub-sterilizing doses

5.10c Effect of gamma irradiation on reproductive performance of F₁ progeny of *Paracoccus marginatus*, treated as pre-gravid female adult (3-4 day old) with sub-sterilizing doses

5.10d Effect of gamma irradiation on reproductive performance of F₁ progeny of *Paracoccus marginatus*, treated as parent gravid female (6-7 day old) with sub-sterilizing doses

5.11 Effective gamma doses (viz. ED₅₀, ED₉₀ and ED₉₉.₉) for inducing sterility in F₁ adult in *Paracoccus marginatus* irradiated in male and female imaginal stages of different age groups in parent generation...425

5.12 Influence of temperature on radiation bioefficacy on the Papaya mealybug, *Paracoccus marginatus*...427

5.12a Influence of temperature on radiation bioefficacy on crawlers

5.12b Influence of temperature on radiation bioefficacy on third instar female nymph (N₃-♀)

5.12c Influence of temperature on radiation bioefficacy on gravid (6-7 day old) female

5.13 Effective gamma doses (viz. ED₅₀, ED₉₀ and ED₉₉.₉) for inducing mortality in crawlers, N₃-female and gravid female, *Paracoccus marginatus* at different temperatures within 48hr post treatment.................442

5.13a Effective gamma doses for inducing mortality in crawlers at different temperatures within 48hr
5.13b Effective gamma doses for inducing mortality in N₃-female at different temperatures within 48hr

5.13c Effective gamma doses for inducing mortality in gravid female at different temperatures within 48hr

DISCUSSION... 454

SUMMARY ... 467

CONCLUSION ... 477

REFERENCES ... 483