List of Figure

Fig -1.1a Nanomaterials dimensions on the metric scale (in nm)
Fig -1.1b Nano-object shapes reflects the number of nanoscale dimensions
Fig -1.1c Myriad Nano-objects
Fig-3.3a Lactic acid bacteria checked for its purity on MLB agar
Fig-3.3b UV visible spectra of Ag NP’s synthesized by isolated LAB’s
Fig-3.3c SEM shows biosorption of AgNP’s on the biomatrix
Fig-3.3d Arrows shows the AgNP’s formed on biomatrix of isolate VRS-5
Fig-3.3e Arrow shows the aggregation of the AgNP’s over the biomatrix of isolate VRS-4
Fig-3.3f No detectable AgNP’s on the cell surface of Lactococcus lactis subsp. Lactis
Fig-3.3g XRD analysis of VRS-2 with typical metallic silver diffraction peaks
Fig-3.3h XRD analysis of VRS-4 showing diffraction peak for Ag$_2$O.
Fig-3.3i XRD analysis of VRS-5 showing diffraction peaks for with Ag$_2$O
Fig-3.3j XRD analysis of MTCC 440 without typical metallic silver diffraction peaks
Fig-3.3k Graph represents AES analysis. Amount of silver associated with the sample (whey with culture) with initial silver nitrate concentration of 0.2mg/ml
Fig-3.3m 16S r DNA Sequences of Strain VRS-2
Fig-3.3n The strain VRS-2 shows significant similarity with L. rhamnosus based on nucleotide homology and phylogenetic analysis
Fig-4.1 Possible mechanisms of resistance against metal ions by microorganisms
Fig-4.3a Bioabsorption of ionic silver on bacterial cell wall. The intense black spots of AgNP’s and impact of nanocrystals over the cell
wall can be seen in photograph

Fig-4.3b Colour change depict AgNP’s synthesis by EPS
Fig-4.3c X-RD pattern of EPS stabilized AgNP’s
Fig-4.3d EDX spectrum of EPS stabilized AgNP’s
Fig-4.3e FT-IR spectrum of EPS stabilized AgNP’s
Fig-4.3f Extracellular polysaccharides and other polymeric compounds attached to the cell wall
Fig-4.3g EPS stabilized AgNP’s
Fig-4.3h AFM shows AgNP’s
Fig-4.3i Three dimensional image of AgNP’s
Fig-5.3a Influence of pH on silver reduction based on time duration
Fig-5.3b Influence of pH on reduction of silver ions based on AES analysis
Fig-5.3c No detectable AgNP’s over the biomass at pH 2.0
Fig-5.3d Varying size of silver crystal formed on cell wall at pH 4.0
Fig-5.3e Uniform AgNP’s over the cell wall of bacterium at pH 10.0.
Fig-5.3f Suggested bacterial reduction of Ag⁺ to Ag⁰ at the cell surface
Fig-5.3g Influence of the temperature on the silver reduction based on AES
Fig-5.3h Influence of temperature at 35°C on the size and distribution of AgNP’s
Fig-5.3i Influence of temperature at 45°C on the size and distribution of AgNP’s
Fig-5.3j Influence of the varying conc. of AgNO₃ on the silver reduction based on AES
Fig-5.3k Sharp peak of AgNP’s at 8 mM concentration of AgNO₃
Fig-6.2a Influence of varying pH’s on the biomass production of L. rhamnosus VRS-2 in whey medium
Fig-6.2b Influence of varying temperature on the biomass production of L. rhamnosus VRS-2 in whey medium
Fig-6.2c Comparison of biomass production in MRS and whey medium
Fig-7.3a Anti bacterial activity of AgNPL against (a) MR & VR \textit{S. auerus} strain 827 (b) ESBL Producing -\textit{E. coli} strain 566
Fig-7.3b Growth curve of \textit{E. coli} in 100 mL NB with 10^7 CFU/mL in presence of different conc. of AgNPL
Fig-7.3c Growth curve of \textit{S. auerus} in 100 mL NB with 10^7 CFU/mL in presence of different conc. of AgNPL
Fig-7.3d Cytotoxic effects of varying concentrations of AgNPL against HeLa cell lines
Fig-7.3e Mitochondrial reduction of yellow MTT tetrazolium dye to a highly colored blue formazan product indicating the viable HeLa cells in medium
Fig-8.3a Biofilm produced by \textit{S. auerus} strain 827 on MT plate
Fig-8.3b Slimy films of \textit{S. auerus} on plain PMMA bone cement (test) showing adherence on the discs when compared to control.
Fig-8.3c Biofilm of \textit{S. aureus} on the antibiotic-loaded bone cement are indicated by arrows (Test).
Fig-8.3d No biofilm was observed on PMMA bone cement loaded with AgNP’s.
Fig-8.3e Antibacterial activity of different PMMA against MS & VSSA
Fig-8.3f Antibacterial activity of different PMMA against MR & VRSA
Fig-8.3g Curve 1 and 2 represents uninhibited bacterial proliferation. In curve 3 complete inhibition of bacterial proliferation is illustrated.
Fig-8.3h X-ray Film of three different PMMA materials