REFERENCES


27. Hanington G., Chen P.F., Asbeck P.M. and Larson L.E. (1999), ‘High-
efficiency power amplifier using dynamic power supply voltage for
CDMA applications’, IEEE Transactions on Microwave Theory and
Techniques, Vol. 47, No. 8, pp. 1471-1476.

W.H., Harris W.A., Harrison S.W., McLeod W.W., Stodola E.K. and
Talpey T.E. (1960), ‘Representation of noise in linear two ports’, in

29. Heng Zhang, Xiaohua Fan and Sinencio E.S. (2009), ‘A Low power,
linearized, Ultra wideband LNA design technique’, IEEE Journal of

CMOS UWB distributed LNA’, IEEE Journal of Solid State Circuits,
Vol. 42, No. 9, pp. 1892-1905.

31. Ho D. and Mirabbasi S.,(2007), ‘Design considerations for Sub-mW
RF CMOS Low Noise Amplifiers,’ in the proceedings of Canadian

32. Holger Karl and Andreas Willig (2005), ‘Protocols and architectures
470-09510-2, 536 pages.

33. Hyokjae Choi, Sangho Shin, Yeonwoo Ku, Mooil Jeong and Kwyro
Lee (2003), ‘A 4.9mW, 270MHz CMOS Frequency synthesizer/
pp. 443-446.

34. Hyoung-Seok, Taeksang Song, Euisik Yoon and Choong-Ki Kim
(2006), ‘A power efficient injection locked class E power amplifier for
wireless sensor networks’, IEEE Microwave and Wireless Components
Letters, Vol. 16, No. 4, pp. 173-175.

reuse cascade amplifier’ In the Proceedings of Asia Pacific Microwave

balanced noise cancelling LNA in 0.13μm CMOS’, IEEE Journal of


