CONTENTS

CHAPTER-I : INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction</td>
</tr>
<tr>
<td>1.1 Classification of magnetic materials</td>
</tr>
<tr>
<td>1.2 Classification of ferrites according to their coercivity</td>
</tr>
<tr>
<td>1.2.1 Soft ferrites</td>
</tr>
<tr>
<td>1.2.2 Hord ferrites</td>
</tr>
<tr>
<td>1.3 Classification of ferrites with respect to their crystal structure</td>
</tr>
<tr>
<td>1.4 Structure of spinel ferrite</td>
</tr>
<tr>
<td>1.5 Classifications of spinel ferrite</td>
</tr>
<tr>
<td>1.6 Some of the applications of ferrites</td>
</tr>
<tr>
<td>1.7 Aim of the present study</td>
</tr>
<tr>
<td>1.8 Organisation of the thesis</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

CHAPTER-II: LITERATURE SURVEY

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Importance of NiCuZn ferrite</td>
</tr>
<tr>
<td>2.2 Earlier work on the NiCuZn ferrites</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>
CHAPTER-III: THEORETICAL BACKGROUNDs

3.1 Introduction 42
3.2 Structural studies 42
 3.2.1 X-ray diffraction 42
3.3 Density 45
3.4 Microstructural studies 45
3.5 Grain growth 47
3.6 Electrical properties 47
 3.6.1 D. C. Resistivity 47
3.7 Dielectric constant theoretical models and loss factor 49
3.8 Magnetic Properites 53
 3.8.1 Saturation magnetization (Ms) 53
 3.8.2 Curie Temperature (Tc) 56
 3.8.3 Initial permeability 58
 3.8.3.1 Relation between Initial permeability / susceptibility and grain size 61
 3.8.4 Hysteresis loop characteristics 62
3.9 FT-IR Spectroscopy 65
3.10 Mossbauer effect and the parameters 67
 3.10.1 Mossbauer effect 67
 3.10.2 Isomer shift 69
 3.10.3 Electric quadrupole interaction 70
3.10.4 Magnetic dipole interaction

3.10.5 Line shape and width

References

CHAPTER-IV : EXPERIMENTAL DETAILS

4.1 Introduction

4.2 Sample preparation

4.3 Characterization of material

4.4 Experimental measuring techniques

4.4.1 X-ray diffraction and Lattice constant

4.5 Density and porosity

4.6 Scanning Electron Microscope

4.7 Vibrating Sample Magnetometer

4.8 Experimental setup for Curie temperature measurement

4.9 Initial Permeability

4.10 Hysteresis Loops

4.11 Resistivity measurement experimental setup

4.12 Experimental setup for dielectric constant measurement

References

CHAPTER-V : XRD, SEM, FT-IR, DC resistivity and dielectric properties of Ni-Cu-Zn FERRITE

5.1 Introduction

5.2 Experimental procedure
5.2.1 X-ray diffraction analysis
5.2.2 Lattice constant
5.3 Formulation of grain growth rate
5.4 Grain size measurement
5.5 FT-IR Studies
 5.5.1 Introduction
5.6 DC Electrical Resistivity Measurement
 5.6.1 Room temperature DC resistivity
 5.6.2 Temperature dependent of DC resistivity
 5.6.3 Activation Energy
5.7 Dielectric constant and Loss factor
 5.7.1 Introduction:
References

CHAPTER – VI: MAGNETIC AND MOSSBAUER STUDIES
6.1 Introduction
6.2 Magnetization measurements
 6.2.1 Magnetic Moment
6.3 Curie temperature
6.4 Initial permeability
 6.4.1 Introduction
6.5 Density and porosity
6.6 Mossbauer Analysis