Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgment</td>
<td>i</td>
</tr>
<tr>
<td>Synopsis</td>
<td>iii</td>
</tr>
<tr>
<td>List of figures and tables</td>
<td>x</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xii</td>
</tr>
</tbody>
</table>

1.1 Diabetes Mellitus

1.1.1 Types of diabetes : 2
1.1.2 Insulin and insulin mediated glucose disposal : 3
1.1.3 Insulin signaling and insulin resistance : 4
1.1.4 Insulin resistance in adipocytes and muscles : 6

1.2 Glucose transporters

1.2.1 Glucose transporter isoform : 7
1.2.2 GLUT4- structural and biochemical aspects : 8
1.2.3 Genetics of GLUT4 : 9
1.2.4 Cell biology of GLUT4 : 11
1.2.5 Membrane translocation of GLUT4 : 12
1.2.5.1 Insulin mediated GLUT4 translocation : 13
1.2.5.2 Insulin independent GLUT4 translocation : 14
1.2.6 Signaling pathways in GLUT4 translocation and their importance. : 15

1.3 Treatment for Diabetes

1.3.1 Insulin for diabetes – advantages and disadvantages. : 16
1.3.2 Herbal medicines and natural products in the treatment of diabetes : 17
1.3.2.1 In vivo and in vitro studies on antidiabetic plants. : 18
1.3.2.2 Insulin secretagogue and insulin mimetic compounds purified from plant extracts : 20
1.3.3 Target based therapeutic approach for insulin resistance : 21

1.4 Significance of the present study

: 22

2.1 Chemicals and Reagents

: 24

2.2 Plant extraction

2.2.1 Collection of plants : 24
2.2.2 Plant extraction : 25
2.2.2.1 Large scale extraction : 25
2.2.3 Fractionation of crude extract and compound isolation : 26

2.3 Bioassay

: 27
2.3.1 Cell culture and differentiation : 27
2.3.2 Transfection of 3T3-L1 fibroblasts : 28
2.3.3 GLUT4 translocation assay : 28
2.3.4 Plasma membrane sheet assay : 28
2.3.5 Glucose uptake assay : 30
2.3.6 Western blot analysis : 30

3.1 Standardization of plant extraction and bioassay : 32
3.1.1 Collection and extraction of plants for initial screening : 32
3.1.2 Standardization of GLUT4 translocation assay : 32
3.1.3 Standardization of plasma membrane sheet assay : 35
3.1.4 Standardization of glucose uptake assay : 35

3.2 Kaempferitrin (Ktn) inhibits GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes : 37
3.2.1 Introduction : 37
3.2.2 Extraction and isolation of Ktn from B. acuminata leaves : 39
3.2.3 Ktn inhibits insulin stimulated GLUT4 translocation in differentiated 3T3-L1 cells : 42
3.2.4 Glucose uptake in 3T3-L1 cells is inhibited by Ktn in a concentration dependent manner : 43
3.2.5 Ktn inhibits insulin stimulated Akt phosphorylation : 44
3.2.6 Ktn directly interacts with the glucose transport channel in GLUT4. : 45
3.2.7 Discussion : 46

3.3 Kaempferitrin induces GLUT4 translocation in muscle cells. : 48
3.3.1 Introduction : 48
3.3.2 Effect of Ktn on muscle glucose uptake. : 49
3.3.3 Effect of Ktn on GLUT4 translocation in differentiated muscle cells. : 50
3.3.4 Effect of Ktn on signaling pathways that stimulate GLUT4 translocation and glucose uptake in muscle cells. : 52
3.3.5 Discussion : 54

3.4 Active fraction from Bauhinia acuminata leaves stimulates GLUT4 translocation through an Akt independent pathway. : 57
3.4.1 Introduction : 57
3.4.2 Extraction, fractionation and purification of active fraction from Bauhinia acuminata leaves. : 57
3.4.3 B. acuminata leaf extract stimulate GLUT4 translocation in 3T3-L1 adipocytes. : 59
3.4.4 B. acuminata leaf extract stimulate glucose uptake in 3T3-L1 adipocytes and C2C12 muscles : 61
3.4.5 EAF from B. acuminata leaves stimulate (Extra cellular signal regulated kinase) ERK activation in 3T3-L1 cells. : 61
3.4.6 Discussion : 62
3.5 Gallic acid (GA) induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells.

3.5.1 Introduction

3.5.2 Plant extraction and column purification

3.5.2.1 Extraction, fractionation and purification of the active constituent from seabuckthorn leaves

3.5.3 Seabuckthorn leaf extract and GA induces GLUT4 translocation in transfected 3T3-L1 preadipocytes.

3.5.4 Increased glucose uptake activity by seabuckthorn leaf extract and GA

3.5.5 The involvement of insulin signaling proteins in the cellular phosphorylation induced by GA

3.5.6 GA stimulates the activation of PKCζ/λ in differentiated 3T3-L1 adipocytes.

3.5.7 Discussion

3.6 Major findings from the thesis

3.7 Publications from the thesis

3.8 Reference

Appendix and copy of publication