List of Figures

Figure 1.1: AIDS prevalence in India (NACO report 2010)

Figure 1.2: Neighborjoining phylogenetic tree of fulllength genome sequence of representative HIV-1 isolates

Figure 1.3: The frequency of each HIV-1 subtype and recombinant forms was estimated in each country based on published findings

Figure 1.4: HIV-1/AIDS disease progression

Figure 1.5: Life cycle of HIV-1

Figure 1.6: Schematic representation of HIV-1 virion structure

Figure 1.7: The structure of HIV-1 5’-longterminalrepeat (LTR).

Figure 1.8: gag-pol precursor polyproteins

Figure 1.9: HIV-1 gp160 envelop genome.

Figure 1.10: RT structure Ribbon representation of HIV-1 RT in a complex with nucleic acid. The fingers, palm, thumb, connection, and RNase H subdomains of the p66 subunit are shown in blue, red, green, yellow, and orange, respectively. The p51 subunit is shown in dark brown. The template and primer DNA strands are shown in light gray and dark gray, respectively.

Figure 1.11: HIV protease enzyme.

Figure 1.12: HIV integration

Figure 1.13: Various steps targeted by anti-HIV-1 drugs.

Figure 1.14: Viral entry and dissemination during the sexual transmission of HIV-1. (A) Interactions of HIV-1 envelope glycoproteins, CD4, and CCR5 or CXCR4 co-receptors trigger fusion and entry of HIV-1. (B) Outline of the sequence and time course of events involved in viral dissemination

Figure 4.1.1: Anti-HIV-1 activity of phloroglucinols against IIIB in TZM-bl cells
Figure 4.1.2: Activity of dimeric phloroglucinols against a. IndieC and b. JRCSF, c. ADA, d. NLAD8

Figure 4.1.3: Anti-HIV-1 activity of dimeric phloroglucinols against HIV-1 dual tropic isolates HIV-1 89.6 and HIV-1 YU2 in TZM-bl cells

Figure 4.1.4: Anti-HIV-1 activity of quinoline 2,4-diols in TZM-bl cells infected with HIV-1 IIIB

Figure 4.1.5: Activity of quinoline 2,4-diols against R5 tropic viruses in TZM-bl cells. (Inhibition of a. ADA, b. AD8, c. YK-JRCSF, d. Indie C1)

Figure 4.1.6: Inhibition of dual tropic virus infection of TZM-bl by quinoline 2, 4-diols

Figure 4.2.1: Anti-HIV-1 activity of phloroglucinols in PBMCs infected with HIV-1 IIIB.

Figure 4.2.2: Activity of phloroglucinols against R5 tropic viruses in hPBMCs. (Inhibition of a. ADA, b. AD8, c. Indie C1, d. YK-JRCSF)

Figure 4.2.3: Inhibition of dual tropic isolates HIV-1 YU2 and HIV-189.6 by dimeric phloroglucinol in hPBMCs

Figure 4.2.4 Activity of phloroglucinol against subtype C primary isolates a. VB 51 b. VB 51 in hPBMCs
Figure 4.2.5: HIV-1 inhibition by quinoline 2,4-diols in PBMCs infected with CXCR4 tropic HIV-1 IIIB virus.

Figure 4.2.6: Anti-HIV-activity of quinoline 2, 4-diols in PBMCs infected with subtype B and subtype C R5 tropic viruses. (Inhibition of a. ADA, b. NLAD8, c. YK-JRCSF, d. IndieC1)

Figure 4.2.7: Inhibition of dualtropic virus infection of PBMCs by quinoline 2, 4-diols

Figure 4.2.8: Activity of compounds B7 (20.2 μM), B4 (32.47 μM), B1 (5.47 μM) and AZT (5 μM) against subtype C primary isolates VB51 and VB52 in PBMCs

Figure 4.3.1: Anti-HIV-1 activity of phloroglucinols at different time of additions in TZM-bl cells

Figure 4.3.2: Concentration of compounds [EC50 (μM)] required to get 50% inhibition of in vitro reverse transcription reaction.

Figure 4.3.3: Inhibition of infection of TZM-bl cells.

Figure 4.3.4: Inhibition of CD4 - HIV-1 gp120 fusion in cell – cell fusion by compounds

Figure 4.4.1: Effect of dimeric phloroglucinol on secretion of proinflammatory cytokines from ME180 cells

Figure 4.4.2: Effect of quinoline 2, 4-diols on secretion of proinflammatory cytokines from ME180 cells

Figure 4.4.3: Measurement of Confluence of ME180 epithelial layer in trans-well system using transepithelial Electrical Resistance

Figure 4.4.4: Inhibition of transmission and infection of HIV-1 across epithelial layer by M7.

Figure 4.4.5: Activity of compounds against cell-associated and cell-free virus.