LIST OF TABLES

<table>
<thead>
<tr>
<th>CHAPTERS</th>
<th>TABLES</th>
</tr>
</thead>
</table>
| Chapter IV | **Table 1.** Density (ρ), viscosity (η), refractive index (n_0) and dielectric constant (ε) of different mass fraction on CH$_3$NO$_2$ in PhNO$_2$ at 298.15K.
Table 2. The concentration (c) and molar conductance (Λ) of NaPh$_4$B and Bu$_4$NPh$_4$B in different mass fraction of CH$_3$NO$_2$ in PhNO$_2$ at 298.15 K.
Table 3. Limiting molar conductance (Λ_o), association constant (K_A), co-sphere diameter (R) and standard deviations of experimental Λ of NaPh$_4$B and Bu$_4$NPh$_4$B in different mass fraction of CH$_3$NO$_2$ in PhNO$_2$ at 298.15 K.
Table 4. Walden product ($\Lambda_o \cdot \eta$) and Gibb’s free energy change (ΔG^*) of NaPh$_4$B and Bu$_4$NPh$_4$B in different mass fraction of CH$_3$NO$_2$ in PhNO$_2$ at 298.15 K.
Table 5. The concentration (c), refractive index (n_0) and molar refraction of NaPh$_4$B and Bu$_4$NPh$_4$B in different mass fraction of CH$_3$NO$_2$ in PhNO$_2$ at 298.15 K.
Table 6. The N-O stretching of the PhNO$_2$, CH$_3$NO$_2$ and their different binary mixtures.
Table 7. The N-O stretching of the PhNO$_2$, CH$_3$NO$_2$ and their different binary mixtures in presence of NaPh$_4$B and Bu$_4$NPh$_4$B. | 144-149 |
| Chapter V | **Table 1.** Values of density (ρ), viscosity (η), refractive index (n_0), speed of sound (u), and dielectric constant (ε) of studied pure solvents at 298.15 K.
Table 2. Molar conductance (Λ) and the corresponding concentration (c) of Bu$_4$NPF$_6$ in NM, DO and NB at 298.15 K.
Table 3. Limiting molar conductivity (Λ_o), the association constant (K_A) and the distance of closest approach of ions (R) | 165-171 |
of Bu₄NPF₆ in NM and NB at 298.15 K.

Table 4. Walden product, ($\Lambda \eta_0$) and Gibb’s free energy change, (ΔG^*) of Bu₄NPF₆ in NM and NB at 298.15 K.

Table 5. The calculated limiting molar conductance of ion-pair (Λ_η), limiting molar conductance of triple-ion (Λ_θ^t) slope and intercept of Equation (11) of Bu₄NPF₆ in DO at 298.15 K.

Table 6. Salt concentration at the minimum conductivity (c_{min}) along with the ion-pair formation constant (K_P), triple-ion formation constant (K_T) of Bu₄NPF₆ in DO at 298.15 K.

Table 7. Salt concentration at the minimum conductivity (c_{min}), the ion-pair fraction α, triple-ion fraction (α_T), ion-pair concentration (C_P) and triple-ion concentration (C_T) for of Bu₄NPF₆ in DO at 298.15 K.

Table 8. Salt concentration (c), the ion-pair fraction (α), triple-ion fraction (α_T), ion-pair concentration (C_P) and triple-ion concentration (C_T) of Bu₄NPF₆ in DO at 298.15 K.

Table 9. Experimental values of molarity (c), densities (ρ), apparent molar volume (ϕ_v^0), limiting apparent molar volume (ϕ_v^*) and experimental slope (S_v^*) of Bu₄NPF₆ in NM, DO and NB at 298.15 K.

Table 10. Experimental values of molarity (c), miscosities (η), ($\eta / \eta_0 - 1$) / \sqrt{c}, viscosity A, B-coefficients of Bu₄NPF₆ in NM, DO and NB at 298.15 K.

Table 11. Experimental values of molarity (c), refractive index (n_D) and molar refraction (R₄) of Bu₄NPF₆ in NM, DO and NB at 298.15 K.

Table 12. Experimental values of molarity (c), speed of sound (v), adiabatic compressibility (β_S) and apparent
molar adiabatic compressibility (ϕ_K), limiting apparent molar adiabatic compressibility (ϕ^0_K), and experimental slopes (S^*_K) of Bu₄NPF₆ in NM, DO and NB at 298.15 K.

Table 1. Physical properties of solvent mixture o-toluidine + n-hexanol at 298.15K.

Table 2. Molar conductance (Λ) and the corresponding concentration (c) for R₄NI (R= butyl, pentyl, hexyl and heptyl) in different (0.00 and 0.25) mass fraction of o-toluidine (1) + n-hexanol(2) at 298.15K.

Table 3. Limiting molar conductance (Λ_0), association constant (K_A) co-sphere diameter (R) and standard deviations (σ) of experimental Λ for the electrolytes in 0.00 and 0.25 mass fraction of o-toluidine(1) + n-hexanol(2) at 298.15K.

Table 4. Walden Products $\Lambda_0\eta$ and Gibb’s Energy Change ΔG° for the electrolytes in 0.00 and 0.25 mass fraction of o-toluidine (1) + n-hexanol (2) mixtures at 298.15K.

Table 5. The calculated limiting molar conductance of ion-pair (Λ_0), limiting molar conductances of triple-ion Λ_0^T, for R₄NI (R = butyl, pentyl, hexyl, heptyl) in 0.50 and 0.75 mass fraction of o-toluidine (1) + n-hexanol (2) mixtures at 298.15K.

Table 6. Salt concentration at the minimum conductivity (C_{\min}) along with the ion-pair formation constant (K_P), triple-ion formation constant (K_T) for R₄NI (R = butyl, pentyl, hexyl and heptyl) in 0.50 and 0.75 mass fraction of o-toluidine (1) + n-hexanol (2) mixtures at 298.15K.

Table 7. Salt concentration at the minimum conductivity (C_{\min}), the ion-pair fraction (α), triple-ion fraction (α_T), ion-pair concentration (c_P) and triple-ion concentration (c_T) for
R₄NI (R = butyl, pentyl, hexyl, heptyl) in 0.50 and 0.75 mass fraction of o-toluidine (1) + n-hexanol (2) mixtures at 298.15K.

Table 8. The ion-pair fraction (α), triple-ion fraction (αₜ), ion-pair concentration (Cᵢ), triple-ion concentration (Cₜ) along with the concentration (C) of R₄NI (R = butyl, pentyl, hexyl, heptyl) in 0.50 and 0.75 mass fraction of o-toluidine (1) + n-hexanol (2) mixtures at 298.15K.

Chapter VII

Table 1. Density (ρ), viscosity (η) and relative permittivity (ε) of the solvents at 298.15K.

Table 2. The concentration (c) and molar conductance (Λ) of [EMIm]Br in different solvents at 298.15K.

Table 3. Limiting molar conductance (Λₒ), association constant (Kₐ), co-sphere diameter (R) and standard deviations of experimental Λ (δ) of [EMIm]Br in different solvents at 298.15K.

Table 4. Walden product (Λₒ·η) and Gibb’s energy change (ΔG) of [EMIm] in different solvents at 298.15K.

Table 5. Ionic limiting molar conductance (λₒ±), ionic Walden product (λₒ±·η), crystallographic radii (rₒ) and Stoke’s radii (rₛ) of [EMIm]⁺ and Br⁻ in different solvents at 298.15K.

Table 6. Diffusion Coefficient (D) and ionic mobility (i) of [EMIm]⁺ and Br⁻ in different solvents at 298.15K.

Table 7. Stretching frequencies of the functional groups present in the pure solvent and change of frequency after addition of [EMIm] Br in the solvents.

Chapter VIII

Table 1. Physical properties of aniline at 298.15 K.

Table 2. Molar conductances (Λ) and the corresponding concentration (c) for R₄NI (R = methyl, ethyl, butyl, pentyl, hexyl and heptyl) in aniline at 298.15 K.

Table 3. The calculated limiting molar conductances of ion-
pair (Λ_o), limiting molar conductance of triple-ion (Λ_oT), slope and intercept of equation -1 for R_4NI ($R =$ methyl, ethyl, butyl, pentyl, hexyl and heptyl) in aniline at 298.15 K.

Table 4. Salt concentration at the minimum conductivity (C_{min}) along with the ion-pair formation constant (K_P), triple ion formation constant (K_T) for R_4NI ($R =$ methyl, ethyl, butyl, pentyl, hexyl and heptyl) in aniline at 298.15 K.

Table 5. Salt concentration at the minimum conductivity (C_{min}), the ion pair fraction α, triple ion fraction (α_T), ion pair concentration (C_P) and triple-ion concentration (C_T) for R_4NI ($R =$ methyl, ethyl, butyl, pentyl, hexyl and heptyl) in aniline at 298.15 K.

Table 6. The ion-pair fraction (α), triple-ion fraction (α_T), ion-pair concentration (C_P), triple-ion concentration (C_T) along with the concentration (c) of the tetraalkylammonium salts in aniline at 298.15 K.

Table 1. Density (ρ), viscosity (η) and relative permittivity (ε) of solvent mixtures at 298.15K.

Table 2. The concentration (c) and molar conductance (Λ) of LiAsF$_6$ in different mass fraction of EG (w_1) in MeOH at 298.15K.

Table 3. Limiting molar conductance (Λ_o), association constant (K_A), co-sphere diameter (R) and standard deviations of experimental Λ (δ) of LiAsF$_6$ in different mass fraction of EG (w_1) in MeOH at 298.15 K.

Table 4. Walden product ($\Lambda_o\cdot\eta$) and Gibb’s energy change (ΔG°) of LiAsF$_6$ in different mass fraction of EG (w_1) in MeOH at 298.15K.

Table 5. Ionic limiting molar conductance (λ_o^+), ionic Walden product ($\lambda_o^+\cdot\eta$), crystallographic radii (r_c) and Stoke’s radii (r_s) of Li$^+$ and AsF$_6^-$ ion in different mass...
fraction of EG (w_1) in MeOH at 298.15K.

Table 6. Experimental values of densities (ρ), apparent molar volume (ϕ), viscosities (η), ($\eta/\eta_i - 1)/m^{1/2}$ of LiAsF$_6$ in different mass fraction of EG (w_1) in MeOH at $T = 298.15$ K.

Table 7. Limiting apparent molar volumes (ϕ^0), experimental slopes (S^*), viscosity A and B coefficients of LiAsF$_6$ in different mass fraction of EG (w_1) in MeOH at 298.15 K.