REFERENCES


driving processes and their control’, Greenhouse Gas and Carbon
Balances in Mangrove Coastal Ecosystems, Tateda Y. et al (eds.)
pp. 1-10.

assessment of benthic community metabolism in a south-east Asian
mangrove swamp’, Marine Ecology Progress Series, Vol. 48,
pp. 137-145.

pollution in mangrove ecosystems’, Okinawa: International Society for
mangrove ecosystems, pp. 64-68.

‘Biogeochemistry of Mangrove Soil Organic-Matter - a Comparison
between Rhizophora and Avicennia Soils in South-Eastern Brazil’,

164. Lacerda L.D., Rezende C.E., Aragon G.T., and Ovallae A.R. (1991),
‘Ion and chromium transport and accumulation in a mangrove

165. Lacerda L.D., Rezende C.E., José D.M., Fransisco M.C.F.,
characterization affecting herbivory in a New World mangrove forest’,

166. Lallier-Verges E. and Alberic P. (1990), ‘Optical and geochemical
study of organic matter in present oxic sediments (Equatorial North

‘Relationships between environmental conditions and the diagenetic
evolution of organic matter derived from higher plants in a modern
mangrove swamp system (Guadeloupe, French West Indies)’, Organic
Geochemistry, Vol. 29, pp. 1663-1671.

168. Lashof D.A. and Ahuja D. (1990), ‘Relative contributions of
greenhouse gas emissions to the global warming’, Nature, Vol. 344,
pp. 529-531.

169. Law C.S., Rees A.P. and Owens N.J.P. (1992), ‘Nitrous Oxide:
Estuarine Sources and Atmospheric Flux’, Estuarine Coastal and Shelf


