CHAPTER 1: OBJECTIVE OF THE PRESENT WORK 1-52

1.1 Drug Delivery 2
1.1.1. Routes of drug administration 3
1.1.2. Classification of oral drug delivery systems 8
1.1.3. Advantages of oral controlled delivery of drug 12
1.1.4. Mechanism of oral delivery of drug 13
1.1.5. Mechanism of oral controlled drug delivery 16

1.2 Oral controlled drug release delivery systems 17
1.2.1. Waxy Matrices 17
1.2.2. Osmotic Pumps 17
1.2.3. Carbon Nanotubes 18
1.2.4. Liposomes 19
1.2.5. Polymers 19
1.2.6. Clay minerals 27

1.3 Clay and clay composites: Material of choice for oral delivery of drug 28
1.3.1 Structural properties 29
1.3.2 Mt-polymer composites 34
1.3.3 Mt-polymer nanocomposites as a drug delivery vehicle 39

References 43

CHAPTER 2: RECENT REVIEW OF LITERATURE 53-101

2.1 Clays and modified clays as drug delivery vehicle 54
2.2 Clay-polymer composites and nanocomposites as drug delivery vehicle 70

CHAPTER 3: INTRODUCTION TO ANALYTICAL TECHNIQUES USED IN THE PRESENT WORK 102-133

3.1 Spectrometry 102
3.1.1. UV-Visible spectrometry 102
3.1.2. Fourier Transform Infrared spectrometry 104
3.1.3. Photon correlation spectrometry 110

3.2 Thermal Analysis 112
3.2.1. Thermo Gravimetry 112
3.2.2. Differential Thermal Analysis 113
3.2.3. Differential Scanning Calorimetry 114

3.3 X-Ray Diffraction 116

3.4 High Performance Liquid Chromatography 119

3.5 Electron Microscopy 122
3.5.1. Transmission Electron Microscopy 122
3.5.2. Scanning Electron Microscopy 124
3.5.3. EDX Spectrometry coupled with SEM and TEM 127

3.7 Surface Charge Analysis 128

References 132
CHAPTER 1: SYNTHETIC METHODOLOGIES 134-150

1.1. Material used in the synthesis 134
1.1.1. Drugs 134
1.1.2. Polymer 137
1.1.3. Surfactants 138
1.1.4. Montmorillonite clay mineral 140
1.1.5. Other materials 141

1.2. Synthetic Methodologies 141
1.2.1. Adsorption 141
1.2.2. Ion exchange 143
1.2.3. Single emulsion solvent evaporation 143
1.2.4. Double emulsion solvent evaporation 145
1.2.5. Double emulsion with solvent diffusion 146

References 148

CHAPTER 2: PROPRANOLOL HCl, AN ANTIHYPERTENSIVE DRUG 151-232

2.1. Introduction 151

2.2. Experimental 155
2.2.1. Quantitative estimation of Propranolol HCl 155
2.2.2. Synthesis of Mt-Propranolol HCl complexes 156
2.2.3. Synthesis of Mt-Pluronic F68- Propranolol HCl complexes 157
2.2.4. Synthesis using single emulsion solvent evaporation method 158
2.2.5. Synthesis using double emulsion solvent diffusion method 162
2.2.6. Synthesis using double emulsion solvent evaporation method 165
2.2.7. In-Vitro Drug Release Studies 168

2.3. Results and Discussion 170
2.3.1. Mt-Propranolol HCl complexes 170
2.3.2. Mt-Pluronic F68- Propranolol HCl complexes 190
2.3.3. Formulations obtained using double emulsion solvent diffusion method 202
2.3.4. Formulations obtained using double emulsion solvent evaporation method 206

2.4. Conclusions 224

References 227

CHAPTER 3: ATENOLOL, AN ANTIHYPERTENSIVE DRUG 233-279

3.1. Introduction 233

3.2. Experimental 236
3.2.1. Quantitative estimation of Atenolol 236
3.2.2. Synthesis of Mt-Atenolol complexes 236
3.2.3. Synthesis using double emulsion solvent evaporation method 239
3.2.4. In-Vitro Drug Release Studies 242

3.3. Results and Discussion 243
3.3.1. Mt-Atenolol complexes 243
3.3.2. Formulations obtained using double emulsion solvent evaporation method 262

3.4. Conclusions 274

References 275
CHAPTER 4: 5-FLUOROURACIL, AN ANTICANCER DRUG

4.1. Introduction
4.2. Experimental
 4.2.1. Quantitative estimation of 5-Fluorouracil
 4.2.2. Synthesis of Mt-5Fluorouracil complexes
 4.2.3. Synthesis using double emulsion solvent diffusion method
 4.2.4. Synthesis using double emulsion solvent evaporation method
 4.2.5. In-Vitro Drug Release Studies
4.3. Results and Discussion
 4.3.1. Mt-5 Fluorouracil complexes
 4.3.2. Formulations obtained using double emulsion solvent diffusion method
 4.3.3. Formulations obtained using double emulsion solvent evaporation method
4.4. Conclusions
References

CHAPTER 5: SUMMARY
CHAPTER 6: FUTURE PROSPECTS
CREDENTIALS