References
6. REFERENCES

References

References

Hancock RD, Viola R: **Improving the nutritional value of crops through enhancement of L-ascorbic acid (vitamin C) content: rationale and biotechnological opportunities.** *J Agric Food Chem* 2005, 53(13):5248-5257.

Hazarika P, Rajam MV: **Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene.** *Physiol Mol Biol Plants* 2011, 17: 115-128

Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A: **TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network.** *Plant J* 2009, **60**(6):1081-1095.

Jelenc PC, Kurland CG: **Nucleoside triphosphate regeneration decreases the frequency of translation errors.** *Proc Nat Acad Sci USA* 1979, **76**(7):3174-3178.

Ketting RF, Haverkamp THA, van Luenen HGAM, Plasterk RHA: mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 1999, 99(2):133-141.

Khan, A.S, Singh Z: **Pre-harvest application of putrescine influences Japanese plum fruit ripening and quality.** *Food Sci Technol Int* 2010, 16(1): 53-64.

References

Madhulatha P, Pandey R, Hazarika P and Rajam M V: **High transformation frequency in Agrobacterium-mediated genetic transformation of tomato by using polyamines and maltose in shoot regeneration medium.** *Physiol Mol Biol Plants* 2007, **13:**191-198.

Madhulatha P: **Fruit-specific over-expression of polyamine biosynthesis genes affect diverse aspects of fruit development and quality in tomato.** *PhD thesis.* University of Delhi, Department of Genetics; 2006.

Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB: **A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening.** *Nat Genet* 2006, **38**(8): 948-952.

Martin Tanguy J: **Conjugated polyamines and reproductive development: biochemical, molecular and physiological approaches.** *Physiol Plant* 1997, **100**(3):675-1363.

Martineau HM, Pyrah IT: **Review of the application of RNA interference technology in the pharmaceutical industry.** *Toxicol Pathol* 2007, **35**(3):327-336.

Marton L, Morris D: **Molecular and cellular functions of the polyamines.** *Inhibition of Polyamine Metabolism* 1987:79-184.

Mencarelli F, Saltveit Jr M: **Ripening of mature-green tomato fruit slices.** *J Am Soc Hortic Sci* 1988, **113**.

Olmedo G, Guo H, Gregory BD, Nourizadeh SD, Aguilar-Henonin L, Li H, An F, Guzman P, Ecker JR: ETHYLENE-INSENSITIVE5 encodes a 5′→3′

Pineda B, Gimenez-Caminero E, Garcia-Sogo B, Anton MT, Atares A, Capel J, Lozano R, Angosto T, Moreno V: Genetic and physiological characterization of

Singh N: **Genetic engineering of tomato for fusarium wilt resistance by in planta RNAi-mediated silencing of fungal ornithine decarboxylase gene.** PhD thesis. University of Delhi, Department of Genetics; 2011.

Singh Z, Singh L: **Increased fruit set and retention in mango with exogenous application of polyamines.** *J Hortic Sci* 1995, **70:** 271-277.

Smirnoff N, Wheeler GL: **Ascorbic acid in plants: biosynthesis and function.** CRC Crit Rev Plant Sci. 2000, **19:**267–290

References

Watada, AE, Aulenbach, BB, Worthington, JT: Vitamins A and (l in ripe tomatrres as aifected by' stage of ripeness at harvest and by supplementary ethylene. *J. Food Sci. 1976, 41: 856-858.

References

Zhang Z, Zhang H, Quan R, Wang X-C, Huang R: Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes
