LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>μ mol</td>
<td>micromoles</td>
</tr>
<tr>
<td>n mol</td>
<td>nanomoles</td>
</tr>
<tr>
<td>α</td>
<td>alpha</td>
</tr>
<tr>
<td>β</td>
<td>beta</td>
</tr>
<tr>
<td>γ</td>
<td>gamma</td>
</tr>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>μl</td>
<td>microlitre</td>
</tr>
<tr>
<td>A</td>
<td>absorbance</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>a_w</td>
<td>water activity</td>
</tr>
<tr>
<td>CCD</td>
<td>central composite design</td>
</tr>
<tr>
<td>DW</td>
<td>distilled water</td>
</tr>
<tr>
<td>DNSA</td>
<td>dinitrosalicylic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo dalton</td>
</tr>
<tr>
<td>Km</td>
<td>Michaelis constant</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>pH</td>
<td>hydrogen ion concentration</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscopy</td>
</tr>
<tr>
<td>SSF</td>
<td>solid state fermentation</td>
</tr>
<tr>
<td>T_opt</td>
<td>optimum temperature</td>
</tr>
<tr>
<td>U g⁻¹</td>
<td>unit per gram</td>
</tr>
<tr>
<td>V_max</td>
<td>maximum reaction velocity</td>
</tr>
<tr>
<td>vvm</td>
<td>volume of air per unit volume of the medium per minute</td>
</tr>
<tr>
<td>3D</td>
<td>three dimensional</td>
</tr>
<tr>
<td>4D</td>
<td>four dimensional</td>
</tr>
<tr>
<td>DEAE</td>
<td>diethyl-aminoethyl</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynucleoside triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetraacetic acid</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-Tetramethyl-ethylenediamine</td>
</tr>
<tr>
<td>U L⁻¹</td>
<td>units per litre</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per unit volume</td>
</tr>
<tr>
<td>Vs.</td>
<td>versus</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per unit volume</td>
</tr>
<tr>
<td>μ</td>
<td>Specific growth rate (h⁻¹)</td>
</tr>
<tr>
<td>DEAE</td>
<td>diethyl-aminoethyl</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynucleoside triphosphate</td>
</tr>
<tr>
<td>x g</td>
<td>relative centrifugal force</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
</tbody>
</table>

Note: Some abbreviations may have additional context or definitions within the text that are not included in this list.
LIST OF TABLES

Table 1.1. Chitin content of various organisms
Table 1.2. Differences between family 18 and 19 of chitinases
Table 1.3. Chitinase production in submerged fermentation
Table 1.4. Advantages of SSF over SmF
Table 1.5. Chitinase production in Solid state fermentation
Table 1.6. Characterization of chitinases from different micro-organisms
Table 1.7. Materials and their sources
Table 2.1. Components of different media used for chitinase production
Table 2.2. Range of variables used for the response surface methodology
Table 2.3. Showing adjustment of water activity with glycerol
Table 2.4. Composition of moistening agents used in SSF
Table 2.5. Range of variables used for the response surface methodology
Table 3.1. Thermophilic/thermotolerant mould isolates from different geographical regions of India
Table 3.2. Extracellular chitinase titres from selected fungal isolates
Table 3.3. Plackett-Burman design and results
Table 3.4. Results of regression analysis for the data generated by Plackett-Burman design
Table 3.5. Experimental design and results of CCD of response surface methodology
Table 3.6. Analysis of variance and regression analysis for chitinase production by M. thermophila
Table 3.7. Validation of the statistical model generated for chitinase production
Table 3.8. Chitinase production in shake flasks of varied volumes
Table 3.9. Comparison of optimization of chitinase production by ‘one variable at a time’ and statistical approach
Table 3.10. The design and results of Plackett-Burman design
Table 3.11. Results of regression analysis for Plackett-Burman design
Table 3.12. Range of variables for RSM
Table 3.13. Actual and Predicted values of chitinase production
Table 3.14. Analysis of variance for response surface quadratic model
Table 3.15. Validation of model generated for chitinase production in SSF
Table 3.16. Chitinase production by *M. thermophila* in solid state fermentation
Table 3.17. Other enzymes produced by *M. thermophila* in solid substrate fermentation
Table 3.18. Comparison of optimization of chitinase production by ‘one-variable-at-a-time’ and statistical approach
Table 3.19. Stepwise purification details of chitinase from *M. thermophila*.
Table 3.20. Peptides identified in the purified chitinase of *M. thermophila*
Table 3.21. Effect of additives on thermostability of chitinase
Table 3.22. Effect of various chemicals on chitinase activity
Table 3.23. HPLC analysis of the end products liberated by the action of exochitinase of *M. thermophila* on colloidal chitin
Table 3.24. Chitobiose activity by crude and purified chitinase from *M. thermophila*
Table 3.25. Hatching of *M. incognita* eggs in presence of chitinase
Table 3.26. Bioassay with 3rd instar larvae of *Aedes aegypti*
Table 3.27. Bioassay with *Maconellicoccus hirsutus*
LIST OF FIGURES

Fig. 1.1. (a) Chemical structure of chitin. The grey box indicates one N-acetylglucosamine subunit of the chitin chain. (b) The two major types of chitin are characterized by an antiparallel (α-chitin) or parallel (β-chitin) arrangement of the chains (Seidl, 2008)

Fig. 1.2. Depiction of mechanism of action of the three types of chitinases

Fig. 1.3. The hydrolysis mechanism of chitinases (a) double-displacement mechanism proposed for family 18 chitinases and (b) single-displacement mechanism proposed for family 19 chitinases

Fig. 1.4. Comparison of domains of the ChiB1 fungal/bacterial chitinase (433 aa) and ChiA1 fungal/plant chitinase (825 aa) of A. fumigatus. 1, catalytic domain; 2, Serine/threonine rich domain

Fig. 1.5. The structure of fungal chitinase of family 18. (a) S. cerevisiae endochitinase (CTS1); (b) R. oligosporus chitinase (CHI1); (c) T. harzianum chitinase (CHIT33); (1) signal peptide; (2) catalytic domain; (3) serine/threonine-rich region; (4) chitin-binding domain; (5) C-terminal extension region (Duo-Chuan, 2006)

Fig. 1.6. The structure of β-N-acetyl-glucosaminidases (Plihal et al., 2004)

Fig. 1.7. Crystal structures of chitinases of (a) Aspergillus fumigatus and (b) Clonostachys rosea

Plate 3.1. Petridishes showing the growth and morphology of the mould (a) front iew, (b) reverse of the plate and (c) mature light brown colony

Plate 3.2. Morphology of M. thermophila observed under compound (A, 100X) and scanning electron (B, 500X) microscopes showing conidiospores produced laterally and terminally.

Fig. 3.1 18S rDNA (ITS region) PCR amplification product and sequence of the amplified PCR product

Fig. 3.2. Phylogenetic tree based on alignment of ITS region including 5.8S rDNA

Fig. 3.3. Growth curve of M. thermophila in chitinase production medium

Fig. 3.4. Induction of chitinase in M. thermophila by various inducers
Fig. 3.5. Effect of medium on chitinase production
Fig. 3.6. Effect of incubation period
Fig. 3.7. Effect of temperature
Fig. 3.8. Effect of pH on chitinase production
Fig. 3.9. Effect of inoculum size
Fig. 3.10. Effect of agitation on chitinase production
Fig. 3.11. Effect of additional carbon sources.
Fig. 3.12. Effect of concentration of colloidal chitin
Fig. 3.13. Effect of nitrogen sources on enzyme production
Fig. 3.14. Effect of Potassium nitrate concentration
Fig. 3.15. Effect of K₂HPO₄ concentration
Fig. 3.16. Effect of MgSO₄ concentration
Fig. 3.17. Effect of vitamins on chitinase production
Fig. 3.18. Pareto graph showing the effect of variables on chitinase production
Fig. 3.19. Response surface graph showing the effect and interaction of
(A) potassium nitrate and incubation days and (B) magnesium
sulphate and potassium nitrate on chitinase production in SmF
Fig. 3.20. Chitinase production by *M. thermophila* in a laboratory fermentor
Fig. 3.21. Effect of quantity of wheat bran on chitinase production
Fig. 3.22. Effect of inducers on chitinase production
Fig. 3.23. Effect of different concentrations of flake chitin
Fig. 3.24. Effect of incubation period on chitinase production
Fig. 3.25. Effect of water activity on chitinase production
Fig. 3.26. Effect of initial pH on chitinase production
Fig. 3.27. Effect of temperature on chitinase production
Fig. 3.28. Effect of moistening agents on chitinase production
Fig. 3.29. Effect of moisture level on chitinase production
Fig. 3.30. Effect of inoculum size on chitinase production
Fig. 3.31. Effect of carbon sources supplementation on chitinase production
Fig. 3.32. Effect of glucose on chitinase production
Fig. 3.33. Effect of nitrogen source supplementation on chitinase production

Fig. 3.34. Effect of ammonium nitrate on chitinase production

Fig. 3.35. Pareto-graph showing the effect of variables on chitinase production

Fig. 3.36. Response surface curves showing interaction effects of wheat bran, glucose and moisture ratio on chitinase production

Fig. 3.37. Growth and chitinase profile during SSF

Fig. 3.38. Effect of bed thickness on chitinase production

Fig. 3.39. Elution profile after hydrophobic interaction chromatography of partially purified chitinase.

Fig. 3.40. Detection of molecular weight of the purified chitinase from *M. thermophila* by SDS-PAGE. Lane A contains molecular mass markers, Lane B contains the purified chitinase. Lane C shows the zymogram.

Fig. 3.41. Isoelectric focusing of purified chitinase. Lane 1, purified protein; Lane 2, pI markers.

Fig. 3.42. Deduced amino acid sequence of glycosyl hydrolase family 18 protein from *M. thermophila* ATCC 42464. The matched peptides are underlined and chitinase signature sequences are highlighted.

Fig. 3.43. Effect of temperature on chitinase activity

Fig. 3.44. Effect of pH on chitinase activity

Fig. 3.45. Substrate spectrum of *M. thermophila* chitinase

Fig. 3.46. Lineweaver-Burk plot for chitinase on colloidal chitin

Fig. 3.47. Temperature stability of purified chitinase at 45 and 60°C

Fig. 3.48. Stability of chitinase at 70°C under different pH

Fig. 3.49. Thin layer chromatography of the products of chitin hydrolysis by chitinase of *M. thermophila*

Fig. 3.50. HPLC profile of chitinase incubated with chitobiose and hexaacetylchitohexaose

Fig. 3.51. Effect of amount of enzyme on liberation of reducing sugars
Fig. 3.52. Scanning electron micrographs of colloidal chitin (A), crystalline powder chitin (B), colloidal chitin treated with chitinase (C) and crystalline powder chitin treated with chitinase (D).

Fig. 3.53. Inhibition zones of chitinase against (A) *Fusarium oxysporum* (B) *Curvularia* sp. and *Stachybotrys* sp. (C)

Fig. 3.54. Scanning electron micrographs showing control (left) and chitinase treated (right) mycelium of *Fusarium oxysporum* (a); spores of *Curvularia* sp. (b) and (c) mycelium of *Stachybotrys* sp.

Fig. 3.55. Chitinase treatment of nematode eggs (a) control showing normal eggs and hatched juveniles and (b) Unhatched eggs showing clearance of egg cytoplasm after enzyme treatment.