CHAPTER 4

IMPLEMENTATION OF SVPWM BASED OPEN LOOP V/Hz CONTROL OF INDUCTION MOTOR USING DSP AND FPGA

4.1 INTRODUCTION

The most common principle of induction motor control is the constant V/Hz control (also referred as V/f control) that requires the ratio of magnitude and frequency of the voltage applied to the stator of the motor which is maintained constant. By doing this, the magnitude of the magnetic field in the stator is kept at an approximately constant level throughout the operating range. Thus (maximum) constant torque producing capability is maintained.

When the transient response is critical, switching power converters also allow easy control of transient voltage and current applied to the motor to achieve faster dynamic response. PWM signals applied to the gates of the power switches control the energy that a switching power converter delivers to a motor.

Traditional software-based systems have disadvantages of complex circuitry, limited functions, difficult circuit modification, high cost and low execution speed. The advent of Very Large Scale Integration (VLSI) technology has given FPGAs a rapid growth in importance with wide range of
applications. DSPs allow implementation of advanced algorithms as well as reduction in system cost.

In what follows, DSP and FPGA Based Constant V/Hz speed control of three phase induction motor using the SVPWM technique is presented here under.

4.2 CONSTANT V/Hz CONTROL OF AC MOTOR

The evolution on the operation of induction machines in constant volts per hertz mode back goes back to the late fifties and early sixties but were limited in their low speed range. Today constant volts per hertz drives are built using PWM-IGBT based inverters and the speed range has widened to include very low speeds, although the operation at very near-zero speed (less than 1 Hz) remains as a challenge mainly due to the inverter non-linearities at low output voltages.

4.2.1 Principle of voltage control

By keeping a constant V/Hz ratio for all frequencies, the nominal torque-speed curve of the induction motor can be reproduced at any frequency. This simple and straightforward approach however does not work well in reality due to several factors. The most important factors are:

1. Effect of supply voltage variations
2. Influence of stator resistance
3. Non-ideal torque/speed characteristic (effects of slip) and
4. Non-linearities introduced by the PWM inverter.

Low frequency operation is particularly difficult to achieve, since these effects are most prominent at low voltages. Also the non-linearities within the inverter if not adequately compensated, yield highly distorted
output voltages which in turn produces pulsating torques that lead to vibrations and increased acoustic noise.

4.2.2 The constant V/Hz principle

Today constant Volts per Hertz principle is the most common control principle used in adjustable-speed drives of induction machines (Bose 2004, Krishnan 2006). Hence many real-life motor control applications do not need a high dynamic performance as long as the speed can be efficiently varied in full range. Specifically, if stator resistance is neglected and by keeping a constant slip frequency, the steady state behavior of the induction machine can be characterized as impedance which is proportional to frequency. Therefore, if the V/Hz ratio is kept constant, the stator flux, stator current and variable-frequency induction motor drive’s torque will be constant at any frequency. This feature suggests that to control the torque, one need to simply apply the correct amount of V/Hz to stator windings.

More precisely, from the steady state model, an induction motor is expressed in the fixed reference frame as given by Equations (4.1) to (4.5).

\[
\frac{d\Phi_s}{dt} + R_s I_s = V_s \tag{4.1}
\]

\[
\frac{d\Phi_r}{dt} - j\omega_m \Phi_r + R_r I_r = 0 \tag{4.2}
\]

\[
\Phi_s = L_s I_s + L_m I_r \tag{4.3}
\]

\[
\Phi_r = L_r I_r + L_m I_s \tag{4.4}
\]
\[T_{em} = \frac{3P}{2} L_m (I_s I_r^*) \]

(4.5)

where \(V_s, \Phi_s, \Phi_r, I_s, I_r, I_m \) are respectively the stator voltage, stator and rotor magnetic fluxes, stator, rotor and leakage currents and \(P, R_s, R_r, L_s, L_r, L_m \) and \(\omega_m \) are respectively the number of poles, global stator resistance, rotor resistance, stator inductance, rotor inductance, global leakage inductance and angular speed.

If the motor is fed with a sinusoidal three phase voltage \(V_j = V_m e^{j\omega_s t} \) with angular frequency \(\omega_s \), the steady-state currents in the rotor and the stator will also be sinusoids and expressed as \(I_s = I_{sm} e^{j(\omega_s t + \phi_s)} \) and \(I_r = I_{rm} e^{j(\omega_s t + \phi_r)} \) where \(\phi_s \) and \(\phi_r \) are the respective phase angles. These expressions lead to Equations (4.6) and (4.7).

\[I_s = \frac{R_r + jL_r \omega_{slp}}{\Delta} V_s \]

(4.6)

\[I_r = -\frac{jL_m \omega_{slp}}{\Delta} V_s \]

(4.7)

where \(\omega_s \) is the stator angular frequency, \(\omega_{slp} = \omega_s - \omega_m \) and \(\Delta = (R_s + jL_s \omega_s)(R_r + jL_r \omega_{slp}) + L_m^2 \omega_{slp} \omega_s \). Hence the rotor flux magnitude \(\Phi_{rm} \), which is proportional to rotor current can be kept constant if the ratio \(\frac{V_m}{|\Delta|} \) is kept constant.
At higher speed, $\Delta = jR_sL_s\omega_s$ and the rotor flux magnitude is constant if the ratio $\frac{V_{\text{sn}}}{\omega_s}$ is kept constant leading to $\Phi_m = \frac{L_mV_{\text{sn}}}{L_s\omega_s}$. The motor torque is then proportional to the slip frequency i.e., $T_m = \frac{3P(\omega_m^2 - \omega_s^2)}{2R_s}$. These expressions show that a desired motor torque T_{em} and a desired motor speed ω_m can be obtained if $\omega = \omega_m + \frac{2T_{em}R_s}{3P\omega_m^2}$. Also at low speed, $\Delta = R_sR_m$ and $\Phi_r = \frac{L_mV_s}{R_s}$.

When the stator frequency fails under a given threshold frequency (called the boost frequency), the voltage magnitude must be kept at a given level (called the boost voltage) to keep the rotor flux magnitude constant. Similarly, when the frequency becomes higher than the rated value, the voltage magnitude is also kept at a rated value to take the saturation of the inverter into account. The rotor flux is no more constant and the torque decreases. Roughly the scalar V/Hz control principle aims in feeding the motor windings with a three phase sinusoidal voltage whose amplitude is proportional to the frequency, except below the boost frequency and the over rated frequency as shown in Figure 4.1.

In practice, the slope that defines the relation between the voltage magnitude and frequency is deduced from the rated terminal supply voltage and the rated supply frequency written on the motor name plate, and the boost frequency is chosen equal to a percentage (5%) of the rated frequency. Zhaoyong Zhou et al (2004) demonstrated the implementation of V/Hz control using SPWM technique in an FPGA. This work uses SVPWM for the implementation.
Figure 4.1 Stator voltage magnitude versus stator voltage frequency deduced from the V/Hz Principle

4.3 EXPERIMENTAL SETUP

Figure 4.2 shows the overall block diagram of the experimental setup. The hardware setup used for the implementation is common for both FPGA and DSP based approaches. The patterns generated from DSP/FPGA were first applied to a PWM testing unit which is a prototype board, comprising of transistors in bridge arrangement terminated by RLC load in the three phase system. Then it is fed to the inverter module to control the speed of a 3 HP induction motor. Labview 7.1 is used for the analysis of waveforms captured using the data acquisition card.
4.4 IMPLEMENTATION USING FPGA

Figure 4.3 shows the top-level entity of SVPWM generation using Spartan III xs3s400pq208-4 device and the input and output pin numbers used in the device.

The development board used for the implementation, which has 4x4 matrix input buttons and 4x8 DIP switches, is as shown in Figure 4.4. Input ports a and b (row and column lines of the key chosen) are used for increasing the speed and ports c and d (row and column lines of the key chosen) are used for decreasing the speed. These ports are mapped to two of the 16 push buttons. Input clock is used for interface between this entity and 100 MHz Clock oscillator. There are 4 segments each comprising of 8 DIP switches provided in the Universal development board. Input reset which is connected to a push button is used for resetting the program.
The board has 264 external I/O connectors. Out of these, six I/O connectors are used for sending out the pulses from the development board. Pins p50, p51, p52, p57, p58 and p61 are used for this purpose. There are 32 red LEDs provided in the universal development board. p22, p24, p26, p27 and p28 are the five outputs connected to the LEDs to show the step value.

Figure 4.3 Top level entity – SVPWM based V/Hz control

Figure 4.4 Spartan III development board
This implementation contains eight modules namely (modules are listed with the serial number same as given in Figure 4.5)

1. Speed variation depending up on the given push button input
2. Calculation of modulation index and step value (variation)
3. Clock divider
4. Calculation of \(T_a, T_b \) and \(T_o \)
5. Calculation of the number of 100 Mhz pulses for ON time pulse duration for six SCRs.
6. Pulse generation for Thyristor 1 and Thyristor 4
7. Pulse generation for Thyristor 2 and Thyristor 5

In sections 4.3.1.1 to 4.3.1.5 the algorithms of the above mentioned sub-modules are discussed.
Figure 4.5: Schematic diagram of SVPWM implementation
4.4.1 Flow chart for clock divider module and simulation output - (module 3)

This module generates 10 kHz clock which is the switching frequency of the inverter from the 100 MHz clock available in the development board. Therefore the source clock period T_c is 10 ns. From this, number of clock cycles required for ON and OFF periods is calculated as 5000 each. Hence the internal clock frequency of 10 kHz is arrived as follows.

Switching time period, $T_s = T_c \times (5000+5000) = 100 \mu s$

Switching frequency, $f_s = 1/T_s = 10 kHz$

Also in this module the value of alpha is realized. The flowchart of the clock divider is shown in Figure 4.6 and Figure 4.7 shows the simulation results of clock divider.
Figure 4.6 Flow chart – clock divider

```
reset  100 MHz clock

entity

count=0
max_count=4999
alpha=0

if count<max_count

True

count=count+1

False

clk=not(clk)

if clk=1

if alpha<360°

False

alpha=alpha+\Delta alpha-360°

True

alpha=alpha+\Delta alpha

10 kHz clock

alpha

entity
```
Figure 4.7 Simulation output for clock divider

Hence this module takes 100 MHz clock and step angle as input and produces the new value of angle and the 10 kHz clock as output. For every cycle of 10 kHz clock the angle calculation is carried out. This is done with the second part of the flow chart while the first part is just a delay loop to generate a 10 kHz clock. This can also be observed in the simulation results namely the signal alpha varies from 0 to 18, 18 to 36 etc., happens at every clock cycle.

4.4.2 Flow chart to find out the step angle and modulation index – (module 2)

This module calculates the change in step variation and the modulation index, which is proportional to the set speed input. The input clock to this module is 100 MHz. Stator supply voltage frequency to the motor for a speed of N rpm and P poles, is $f = PN/120$. For the induction motor used in this work, rated speed is 1500 rpm and number of poles is four. The following points are considered for the calculation.

- Time period of the supply voltage $T = 120 / (P*N)$ for $P=4$
- Total number of samples $= T/T_s$
Change in alpha = 360 / total number of samples
Change in alpha = 360*N*P/ (120*fs)*10
(multiplication by 10 is to make the result to an integer to maintain accuracy
and to realize digitally)

Maximum modulation index (in the linear range) = 0.907 for 1500 rpm
Modulation index for required speed = (0.907/1500)*(required speed)
Actual Modulation index = modulation index for required speed*1024
(multiplication by 1024 is to convert the floating point number into an integer
with possible accuracy and multiplication is performed easily by left shifting
the data ten times as $2^{10} = 1024$).

Figure 4.8 shows the flowchart implementing this module and
Figure 4.9 displays the simulation results.

This module executes only when reset input is zero. When reset is
active, it waits in the loop for the reset to become inactive and rest of the
segment is executed on high clock event. This is to ensure that for every clock
cycle, the new value of modulation index and change in angle are calculated.

4.4.3 Flow chart for calculation of T_a, T_b and T_0 and sector
identification – (module 4)

From the SVPWM theory, the expressions for the active time
periods of non-zero vectors T_a and T_b and zero vectors T_0 are generalized in
Equations (4.8) to (4.13) as follows:

$$V_a = \frac{2}{\sqrt{3}} V^* \sin\left(\frac{\pi}{3} - \alpha\right)$$

(4.8)
\[V_b = \frac{2}{\sqrt{3}} V^* \sin \alpha \]
(4.9)

\[T_s = \frac{V_a}{V_1} T_c = \frac{V_a}{V_1} \cdot \frac{T_s}{2} \]
(4.10)

\[T_b = \frac{V_b}{V_1} T_c = \frac{V_b}{V_1} \cdot \frac{T_s}{2} \]
(4.11)

\[T_0 = \frac{T_s}{2} - (T_s + T_b) \]
(4.12)

\[V_1 = \frac{2}{3} V_{dc} \]
(4.13)

With modulation index \(m = \frac{V^*}{V_{dc}} \), substitution of Equations (4.8), (4.9) and (4.13) in Equations (4.10) and (4.11) and rearrangement gives the active periods for the non-zero vectors of sector 1 as

\[
\begin{bmatrix}
T_s \\
T_b
\end{bmatrix} = \frac{\sqrt{3}}{2} m T_s \begin{bmatrix}
\sin(\pi/3) & -\cos(\pi/3) \\
\sin 0 & \cos 0
\end{bmatrix} \begin{bmatrix}
\cos \alpha \\
\sin \alpha
\end{bmatrix}
\]
(4.14)
Figure 4.8 Flow chart – Step angle and modulation index

Change in alpha = $360^\circ N \times P \times 10/(120 \times fs)$

Modulation index = $(0.907 \times 1024 \times N)/1500$
Equation (4.15) is a generalized expression of Equation (4.14) for all the six sectors.

$$\begin{bmatrix} T_a \\ T_b \end{bmatrix} = \frac{\sqrt{3}}{2} mT_s \begin{bmatrix} \sin(k\pi/3) & -\cos(k\pi/3) \\ -\sin((k-1)\pi/3) & \cos((k-1)\pi/3) \end{bmatrix} \begin{bmatrix} \cos\alpha \\ \sin\alpha \end{bmatrix}$$

(4.15)

where k refers to the sector number. Figure 4.10 shows the flowchart for the implementation of the above equations for the calculation of T_a, T_b and T_0. Figure 4.11 shows the flowchart for the sector identification which is a sub-module of active time period calculation. Sectors are named as shown in Figure 3.1.

The flowchart given in Figure 4.10 executes for every clock cycle with reset inactive. This module calculates the time periods of zero and non-zero vectors from the two inputs, modulation index and angle. The switching period (T_s) is used as constant in the coding. Time period calculations are carried out based on Equations (4.12) and (4.15). Similarly Figure 4.11 helps in identifying the sector as per the angle input.
reset clock alpha modulation index

entity

continue if reset=0 and clock = 1

find out the sector

calculating sine and cosine values from look up table

calculate Ta and Tb

\[T_0 = (T/2) - (T_a + T_b) \]

T_a, T_b and T_0

entity

Figure 4.10 Flow chart – T_a, T_b and T_0 calculation
Figure 4.11 Flow chart – Sector identification
4.4.4 Calculation of number of 100 MHz pulses for ON period – (module 5)

Different combinations of T_a, T_b, and $T_o/2$ decide the number of 100 MHz clock pulses for ON period. ON Time Period calculation for each phase varies for every sector and it is as given in Table 4.1 for switch S_{a+}, S_{b+} and S_{c+} of Figure 3.3. The SVPWM pattern implemented is symmetrical sequence as shown in Figure 3.16.

Table 4.1 ON period for every sector of the three phases for switches S_{a+}, S_{b+} and S_{c+} in Figure 3.3

<table>
<thead>
<tr>
<th>Phase</th>
<th>Sector 1</th>
<th>Sector 2</th>
<th>Sector 3</th>
<th>Sector 4</th>
<th>Sector 5</th>
<th>Sector 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph A</td>
<td>$T_a+T_b+T_o/2$</td>
<td>$T_b+T_o/2$</td>
<td>$T_o/2$</td>
<td>$T_o/2$</td>
<td>$T_b+T_o/2$</td>
<td>$T_a+T_b+T_o/2$</td>
</tr>
<tr>
<td>Ph B</td>
<td>$T_b+T_o/2$</td>
<td>$T_a+T_b+T_o/2$</td>
<td>$T_a+T_b+T_o/2$</td>
<td>$T_b+T_o/2$</td>
<td>$T_o/2$</td>
<td>$T_o/2$</td>
</tr>
<tr>
<td>Ph C</td>
<td>$T_o/2$</td>
<td>$T_o/2$</td>
<td>$T_b+T_o/2$</td>
<td>$T_a+T_b+T_o/2$</td>
<td>$T_a+T_b+T_o/2$</td>
<td>$T_b+T_o/2$</td>
</tr>
</tbody>
</table>

Figure 4.12 shows the flow chart for the calculation of number of 100 MHz pulses for ON period of each switch in each sector per phase.
The pulse pattern for the upper switch and the lower switch (inverse pulse) are generated from the same module with a dead time (referred as d in the flowchart shown in Figure 4.13) of 300 pulses of 100 MHz clock and maximum time period (max) as ON period time. With d and max as inputs, this module generates the pulse pattern for upper switch in an arm of VSI while for the lower switch, the same pattern is inverted with a dead time.
Figures 4.14 to 4.19 show the simulation results of the patterns generated for the six sectors. The pattern for each sector is generated with a step variation of 18 for alpha. Though the step variation is fixed, the value of alpha for each sector shows the difference. For example for sector 1 the alpha variation starts from 0 to 594 in steps of 18. Similarly in the last sector, alpha
value ranges from 3006 to 3600 which relates to 200 steps of rotation between 0° and 360° in steps of 1.8°. The simulation results also display the six patterns namely pulse_1 to pulse_6 for every sector. These results are taken for the rated speed of the machine for which the modulation index is calculated as 0.928 as shown.

Figure 4.14 Simulation output for sector 1

Figure 4.15 Simulation output for sector 2
Figure 4.16 Simulation output for sector 3

Figure 4.17 Simulation output for sector 4

Figure 4.18 Simulation output for sector 5
4.4.6 Experimental results using FPGA

The SVPWM module was described in VHDL coding and synthesized with XILINX Project Navigator 7.1 Software. After place and routing in XILINX environment, the architecture is implemented in XILINX Spartan III XS3S400PQ208-4 FPGA device. The designed IC can operate at 100MHz system clock. The synthesis results are as shown under:

Selected Device : 3s400pq208-4
RTL Top Level Output File Name : svpwm.ngr
Top Level Output File Name : svpwm
Number of Slices : 1438 out of 3584 40%
Number of Slice Flip Flops : 221 out of 7168 3%
Number of 4 input LUTs : 2082 out of 7168 29%
Number of bonded IOBs : 17 out of 141 12%
Number of MULT18X18s : 6 out of 16 37%
Number of GCLKs : 2 out of 8 25%
Maximum circuit delay time : 9.342ns (5.960ns logic, 3.382ns route) (63.8% logic, 36.2% route)
Total equivalent gate counts : 44,770
This realization is tested for its effectiveness by implementing it in two stages. In the first stage, it is tested with a prototype PWM testing unit and in the second stage, it is used to control the speed of a three phase induction motor from 300 rpm to 1490 rpm.

4.4.6.1 First stage results (with prototype board)

SVPWM program module was downloaded from PC to FPGA device using JTAG connectivity. The six PWM patterns from FPGA are given to the base terminals of the transistors in the PWM testing unit. This testing unit contains three phase R, L, C load connected to the output of six transistors connected in bridge configuration each rated for 5 volts and 0.25 ampere. The outputs are observed using CRO and the Total Harmonic Distortion (THD) is measured using LABVIEW software and BNC connector. Figure 4.20 shows the photograph of the setup used for prototype implementation.

Figure 4.20 Stage I setup with PWM testing unit
Figures 4.21 to 4.26 show the SVPWM output patterns generated at 10 kHz switching frequency and Figures 4.27 to 4.32 show the phase and line voltage waveforms thus obtained at the load terminals. Figure 4.33 shows sample THD value for a phase voltage.

Figure 4.21 SVPWM for Sa+

Figure 4.22 SVPWM for Sc-

Figure 4.23 SVPWM for Sb+

Figure 4.24 SVPWM for Sa-

Figure 4.25 SVPWM for Sc+

Figure 4.26 SVPWM for Sb-
Figure 4.27 Phase voltage (V_{ao})

Figure 4.28 Phase voltage (V_{bo})

Figure 4.29 Phase voltage (V_{co})

Figure 4.30 Line voltage (V_{ab})

Figure 4.31 Line voltage (V_{bc})

Figure 4.32 Line voltage (V_{ca})

Figure 4.33 THD of phase voltage of V_{ao}
The waveforms shown in the Figures 4.21 to 4.33 are captured for the near rated operation which depicts that the frequency is very close to 50 Hz. Also the amplitude is found to be very close to the rated value as for the prototype board.

4.4.6.2 Results of stage II (real time motor control)

In the second stage, the patterns generated using Xilinx FPGA spartan III XS3S400PQ208-4 device is fed to IPM (Intelligent Power Module) based inverter circuit and the output of the power circuit is fed to the stator of an Induction Motor as shown in Figure 4.2 whose ratings are as shown in Table 4.2. Intelligent power module is a module containing 8 power switches that can be connected in bridge configuration and rest of the switches are for fault protection. Labview software is used to capture the attenuated waveforms and for the determination of THD. Figure 4.34 shows the photograph of a sample result obtained.

![Phase voltage at 1200 rpm](image_url)

Figure 4.34 Phase voltage at 1200 rpm
Table 4.2 Ratings of the motor and IPM used in stage II

<table>
<thead>
<tr>
<th>Motor rating</th>
<th>Intelligent Power Module Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>IGBTs</td>
</tr>
<tr>
<td></td>
<td>3 ph</td>
</tr>
<tr>
<td>Rated Voltage</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Rated Voltage</td>
</tr>
<tr>
<td></td>
<td>415 volt</td>
</tr>
<tr>
<td>Rated current</td>
<td>25 Amps</td>
</tr>
<tr>
<td></td>
<td>Rated current</td>
</tr>
<tr>
<td></td>
<td>9.5 Amps</td>
</tr>
<tr>
<td>Power</td>
<td>3 HP</td>
</tr>
<tr>
<td>Rated speed</td>
<td>1500 rpm</td>
</tr>
<tr>
<td></td>
<td>Rated current</td>
</tr>
<tr>
<td></td>
<td>1200 volt</td>
</tr>
<tr>
<td></td>
<td>Power</td>
</tr>
<tr>
<td></td>
<td>3 HP</td>
</tr>
<tr>
<td></td>
<td>Rated speed</td>
</tr>
<tr>
<td></td>
<td>1500 rpm</td>
</tr>
</tbody>
</table>

Figures 4.35 to 4.40 show the PWM patterns generated for the six switches. These patterns are observed to show its pattern for a cycle of output frequency as against the Figures 4.21 to 4.26 that are observed to show the switching frequency. Figures 4.41 to 4.43 show the line voltages observed at the motor input terminals with their corresponding fundamental frequency and THD values. All these waveforms are taken while the motor is running at 1490 rpm and so the frequency of the output voltages are close to 50 Hz. The magnitude is in its attenuated form since an attenuator is used before the acquisition.

Figure 4.35 SVPWM for Sa+
Figure 4.36 SVPWM for Sc-
Figure 4.37 SVPWM for Sb+

Figure 4.38 SVPWM for Sa-

Figure 4.39 SVPWM for Sc+

Figure 4.40 SVPWM for Sb-

Figure 4.41 Line voltage V_{ab}

Figure 4.42 Line voltage V_{ac}
The hardware setup shown in Figure 4.2 is used to implement the open loop V/Hz speed control of three-phase induction motor. In the block diagram FPGA module is replaced by TMS320F2407A DSP.

4.5 HARDWARE IMPLEMENTATION USING DSP

The algorithm described as under is developed using C language and is compiled using Code Composer Studio 2000 (CCS) version 2.2.

4.5.1 Algorithm

The following registers are initialized for SVPWM implementation.

1. ACTRA – Load the Active high & Active low sequence for each PWM.
2. T1PR – Load the time period for the required switching frequency. Here 10kHz switching frequency is used.
Period value = \((\text{CLK Frequency} \times \text{PLL ratio}) / (\text{Prescaler \times 2})\) / (Desired Output Frequency)

3. T1CON – Select up/down counting mode, clock pre-scalar and then enable timer.

4. DBTCONA – this is loaded with 6 micro seconds (Dead Band Time).

5. COMCONA – This is the common control register and once enabled, then all the PWM outputs are enabled as per the ACTRA register.

II. Look Up Table Creation

As the TMS320F2407 DSP is a fixed point processor, the floating point values are converted to the Q8 format. The sine value (Data) for one full cycle is calculated as follows:

\[
\text{sine data for one cycle} = \text{Switching frequency} / \text{Output frequency} = (10000 / 50)
\]

III. Speed Calculation

Based on the switch pressed in the DSP kit, the speed will be varied by one rpm. Then the corresponding speed is stored as reference. If the switch is not pressed, then old speed is maintained. The speed range is from 300 rpm to 1490 rpm.

IV. ADC Routine

The ADC Routine is used to get the speed, three phase current values if it exceeds the predetermined values and the fault PWM is generated.

V. Sector Routine

1. From the reference speed, the modulation index and the output frequency are calculated.
2. Data for one cycle based on the above calculation is chosen and it is converted to one sector.
3. T_a, T_b, and T_0 values are calculated.
4. The sequencing is decided based on the ODD and EVEN sectors and it is loaded to the compare registers with 50% DC offset.

Here the SVPWM pattern is software determined and CCS 2000 compiler is used for compilation while in section 3.3.2 the pattern generation is hardware determined.

4.5.2 Experimental results using DSP

The results are taken from two stages. First using the prototype – PWM testing unit and the second is the real time implementation.

4.5.2.1 Stage I results

The C program developed for the algorithm explained in section 4.5.1 is compiled using CCS2000 to .out file and it is converted to .hex file using the debugger tool before it is downloaded into the DSP. The six PWM patterns from the DSP are given to the DSP testing unit specified in section 4.4.1.

Figures 4.44 to 4.49 show the six SVPWM patterns generated at 10 kHz switching frequency. Figures 4.50 to 4.55 show the respective line and phase voltage waveforms observed at the load terminals.
Figure 4.44 SVPWM for Sa+

Figure 4.45 SVPWM for Sc-

Figure 4.46 SVPWM for Sb+

Figure 4.47 SVPWM for Sa-

Figure 4.48 SVPWM for Sc+

Figure 4.49 SVPWM for Sb-
4.5.2.2 Stage II results

In the second stage, the results are taken in real time using the setup comprising power scope, TMS320F2407A DSP kit, IPM (Intelligent Power Module) module, 3 HP Induction Motor, CCS V2.2, Debugger tool and LABVIEW software as shown in Figure 4.2 with the specifications shown in
Table 4.2. Figures 4.56 to 4.61 show the six SVPWM patterns, Figures 4.62 to 4.64 show the corresponding line voltage waveforms obtained at a rated speed. Figure 4.65 shows the sample THD value obtained at a speed of 1042 rpm and its corresponding fundamental frequency.

Figure 4.56 SVPWM for Sa+

Figure 4.57 SVPWM for Sc-

Figure 4.58 SVPWM for Sb+

Figure 4.59 SVPWM for Sa-

Figure 4.60 SVPWM for Sc+

Figure 4.61 SVPWM for Sb-
4.6 CONCLUSION

In this chapter, the contribution is the FPGA based implementation of open loop SVPWM based V/Hz speed control of induction motor. The speed range of 300 rpm to 1490 rpm is obtained in both DSP and FPGA based implementation. Based on the results observed, the accuracy of both ways of
implementation is same. THD values justify this. And the major advantage of FPGA based implementation is its speed of execution. It is only 9.342 ns. The algorithm is realized as architecture in FPGA while with DSP it is still a sequential execution of the instructions which takes the CPU overhead time in microseconds. In addition, the reconfigurable structure of the FPGA gives an optimization in the space requirement. This successful attempt triggers to use FPGAs for high performance controller realization.