CHAPTER - 4
FUZZY α-PARACOMPACTNESS IN
FUZZY BOX PRODUCTS

4.1 Introduction

The notion of shading family was introduced in the literature by T.E. Gantner and others in [G;S;W] during the investigation of compactness in fuzzy topological spaces. The shading families are a very natural generalization of coverings. An approach to fuzzy α-paracompactness using the notion of shading families was introduced by S.R. Malghan and S.S. Benchalli in [M;B].

The second section of this chapter describes the necessary definitions and results of shading families.

In the third section, we introduce and study the notion of fuzzy α-paracompactness in fuzzy box products. Here we give a characterization of fuzzy α-paracompactness through fuzzy entourages.

In the last section we introduce fuzzy α-paracompact fuzzy topologically complete spaces. Here we have the main theorem that for a family of fuzzy α-paracompact spaces, their fuzzy box product is fuzzy topologically complete.

* Some results of this Chapter were communicated to the Journal of Fuzzy Mathematics.
4.2 Shading families

The following definitions and results are from [M;B]1

4.2.1 Definition Let \((X,T)\) be a fuzzy topological space and \(\alpha \in [0,1)\). A collection \(\mathcal{U}\) of fuzzy sets is called an \(\alpha\)-shading of \(X\) if for each \(x \in X\) there exists \(g \in \mathcal{U}\) with \(g(x) > \alpha\). A subcollection of an \(\alpha\)-shading of \(X\) which is also an \(\alpha\)-shading is called an \(\alpha\)-subshading of \(X\).

4.2.2 Definition Let \(X\) be a set. Let \(\mathcal{U}\) and \(\mathcal{V}\) be any two collections of fuzzy subsets of \(X\). Then \(\mathcal{U}\) is a refinement of \(\mathcal{V}\) (\(\mathcal{U} < \mathcal{V}\)) if for each \(g \in \mathcal{U}\) there is an \(h \in \mathcal{V}\) such that \(g \leq h\).

If \(\mathcal{U}, \mathcal{V}, \mathcal{W}\) are collections such that \(\mathcal{U} < \mathcal{V}\) and \(\mathcal{U} < \mathcal{W}\) then \(\mathcal{U}\) is called a common refinement of \(\mathcal{V}\) and \(\mathcal{W}\).

4.2.3 Definition A family \(\{a_s : s \in S\}\) of fuzzy sets in a fuzzy topological space \((X, T)\) is said to be locally finite if for each \(x \in X\) there exists a fuzzy open set \(g\) with \(g(x) = 1\) such that \(a_s \leq 1-g\) holds for all but at most finitely many \(s \in S\).

4.2.4 Definition A family \(\{a_s : s \in S\}\) of fuzzy sets in a fuzzy topological space \((X, T)\) is said to be \(\sigma\)-locally finite if it is the union of countably many locally finite sets.
4.2.5 **Theorem** Let \(\{ a_s \} \) and \(\{ b_t \} \) be two \(\alpha \)-shadings of a fuzzy topological space \((X, T)\), where \(\alpha \in [0,1) \). Then

i) \(\{ a_s \land b_t \} \) is an \(\alpha \) - shading of \(X \) which refines both \(\{ a_s \} \) and \(\{ b_t \} \).

Further if both \(\{ a_s \} \) and \(\{ b_t \} \) are locally finite so is \(\{ a_s \land b_t \} \).

ii) Any common refinement of \(\{ a_s \} \) and \(\{ b_t \} \) is also a refinement of \(\{ a_s \land b_t \} \).

4.2.6 **Theorem** Let \(\{ a_s : s \in S \} \) be a locally finite family of fuzzy sets in a fuzzy topological space \((X,T)\) then

i) \(\{ \overline{a_s} : s \in S \} \) is also locally finite.

ii) For each \(S' \subset S \), \(\bigvee \{ \overline{a_s} : s \in S' \} \) is a fuzzy closed set.

4.3 **A Characterization of fuzzy \(\alpha \)-paracompactness**

4.3.1 **Definition** A fuzzy topological space \((X, T)\) is said to be \(\alpha \)-paracompact if each \(\alpha \) - shading of \(X \) by fuzzy open sets has a locally finite \(\alpha \)-shading refinement by fuzzy open sets.

We quote the following theorem from [SU]

4.3.2 **Theorem** For a fuzzy regular space the following are equivalent

1) \(X \) is \(\alpha \)-paracompact.

2) Every \(\alpha \)-shading of \(X \) by fuzzy open sets has a \(\sigma \)- locally finite \(\alpha \) - shading refinement by fuzzy open sets.
3) Every α-shading of X by fuzzy open sets has a locally finite α-shading refinement by fuzzy open sets.

4) Every α-shading of X by fuzzy open sets has a locally finite α-shading refinement by fuzzy closed sets.

We prove the following theorem.

4.3.3 Theorem For a fuzzy regular space X, X is α-paracompact if and only if (*) every α-shading \mathcal{U} of X by fuzzy open sets is refined by a fuzzy entourage D.

Remark: We say that D refines \mathcal{U} for some $D \subseteq X \times X$ if

$$\mathcal{S} = \{D \times x : x \in X\}$$

refines \mathcal{U}. In particular, this gives a refinement by fuzzy entourages.

Proof of the above theorem

We first prove that (4) in theorem (4.3.2) implies (*).

Let \mathcal{U} be an α-shading of X by fuzzy open sets. So for each $x \in X$ there exists $U_\beta \in \mathcal{U}$ such that $U_\beta(x) > \alpha$.

Let $\mathcal{V} = \{V_\beta : \beta \in \wedge\}$ be a locally finite α-shading refinement by closed sets. For each $\beta \in \wedge$ and $V_\beta < U_\beta$,
Now W_β is a fuzzy open neighbourhood of the diagonal in $X \times X$.

Let $V = \inf \{ W_\beta : \beta \in \Lambda \}$

So $V <x> \leq W_\beta <x>$ for each $x \in X$.

Therefore $\{ V <x> : x \in X \}$ is a refinement of \mathcal{H}.

Next we prove that V is a fuzzy neighbourhood of the diagonal.

For each point of the diagonal we choose a fuzzy open set g of x with

$g(x) = 1$ and $V_\beta \leq 1 - g$ holds for all but atmost finitely many $\beta \in \Lambda$.

If $g \land V_\beta = 0$ then $g \leq 1 - V_\beta$

That is $g \times g \leq W_\beta$

But $V = \inf \{ W_\beta : \beta \in \Lambda \}$.

This means that V is a fuzzy neighbourhood of the diagonal.

Before proving (*) implies (1) of theorem 4.3.2, we prove a lemma

4.3.4 Lemma Let X be a fuzzy topological space such that each

α - shading of X by fuzzy open sets is refined by a fuzzy entourage and let

$\mathcal{A} = \{ a_s : s \in S \}$ be a locally finite family of fuzzy subsets of X. Then

there is a neighbourhood V of the diagonal in $X \times X$ such that the family of

all sets $V <a_s>$ for $s \in S$ is locally finite.
Proof

Let \(\mathcal{U} \) be an \(\alpha \) – shading of \(X \) by fuzzy open sets. That is, for each \(x \in X \) there exists a fuzzy open set \(U_\beta \in \mathcal{U} \) such that \(U_\beta(x) > \alpha \).

Since \(\{a_s : s \in S\} \) is locally finite, for each \(x \in X \) there exists a fuzzy open set \(g \) with \(g(x) = 1 \) and \(a_s \leq 1 \) - \(g \) holds for all but atmost finitely many \(s \in S \).

Let \(U \) be neighbourhood of the diagonal such that \(\{U^{<x>} : x \in X\} \) refines \(\mathcal{U} \). Then there exists a symmetric neighbourhood \(V \) of the diagonal such that \(V \circ V \leq U \), where \(V = V^{-1} \).

If \(V \circ V^{<x>} \land a_s = 0 \) then \(V^{<x>} \land V^{<a_s>} = 0 \)

For,

If \((y_\alpha)_{\alpha > 0} \in V^{<x>} \land V^{<a_s>} \) then \(y_\alpha \in V^{<x>} \) and \(y_\alpha \in V^{<a_s>} \) where \(\alpha > 0 \).

That is, \(V(x, y) = \alpha \) and \(V^{<a_s>} (y) = \alpha \) where \(\alpha > 0 \).

Now \(V^{<a_s>} (y) = \sup_{y \in X} (a_s(z) \land V(z, y)) = \alpha \)

Therefore given \(\varepsilon > 0 \), there exists \(z \in X \) such that

\[a_s(z) \land V(z, y) > \alpha - \varepsilon \]

That is, \(a_s(z) > \alpha - \varepsilon \) and \(V(z, y) > \alpha - \varepsilon \).
\[V \circ V(x, z) = \sup_{y \in X} \{ V(x, y) \wedge V(y, z) \} > \alpha - \varepsilon \]

\[\therefore V \circ V(x, z) \wedge a_s(z) > \alpha - \varepsilon \]

Which is a contradiction.

Therefore the family of all sets \(V_{a_s} \) for \(s \in S \) is locally finite.

Hence the lemma.

We prove (*) implies (1) of theorem 4.3.2.

Let \(\mathcal{U} \) be an \(\alpha \) – shading of \(X \) by fuzzy open sets.

Therefore for each \(x \in X \) there exists \(U_\beta \in \mathcal{U} \) such that \(U_\beta(x) > \alpha \).

By (*) there exists a fuzzy neighbourhood \(V \) of the diagonal which refines \(\mathcal{U} \).

That is \(\{ V_{a_s} : x \in X \} \) refines \(\mathcal{U} \).

That is \(V_{a_s} \leq U_\beta \) where \(U_\beta \in \mathcal{U} \).

Let \(\{ a_s : s \in S \} \) be a locally finite family of fuzzy subsets of \(X \).

Then by above lemma there exists a neighbourhood \(V \) of the diagonal in \(X \times X \) such that \(\{ V_{a_s} : s \in S \} \) is locally finite.

where \(V_{a_s}(y) = \sup_{x \in X} (a_s(x) \wedge V(x, y)) \) for all \(y \in X \)

So for each \(s \in S \), choose a fuzzy open set \(U_\beta \in \mathcal{U} \) such that \(a_s \leq U_\beta \).

Let \(W_\beta = U_\beta \wedge V_{a_s} \).
Therefore W_{β} is a locally finite α – shading refinement of \mathcal{U}.

Hence X is fuzzy α-paracompact.

4.4. Fuzzy α-paracompact fuzzy topologically complete spaces

We first prove a lemma.

4.4.1 Lemma If X is a fuzzy α-paracompact space, then the fuzzy filter of entourages of X is a complete fuzzy uniformity compatible with X.

Proof

Let \mathcal{N} be the fuzzy filter of entourages of X. We prove that \mathcal{N} is a fuzzy uniformity.

Let $D \in \mathcal{N}$. For each $x \in X$ choose an α – shading U_x of x by fuzzy open sets with $U_x(x) > \alpha$ and $U_x \times U_x \subseteq D$. By theorem 4.3.3, every α – shading of X by fuzzy open sets is refined by a fuzzy entourage.

That is, there exists $E \in \mathcal{N}$ which refines $\mathcal{U} = \{U_x, x \in X\}$.

Let $D = E \wedge E^{-1}$

So we have.

i) $D(x, x) = 1$

ii) $D \in \mathcal{N} \Rightarrow D^{-1} \in \mathcal{N}$

iii) Let $(x, y) \in E$ and $(y, z) \in E$
Consider \(E \circ E (x, z) = \sup_{y \in X} \{ E(x, y) \land E(y, z) \} \leq D(x, z) \).

That is, for \(D \in \mathcal{N} \), there exists \(E \in \mathcal{N} \) such that \(E \circ E \leq D \).

Now \(D \in \mathcal{N} \) is a fuzzy open subset of \(X \times X \) and \(D(x) \) is a fuzzy open subset of \(X \) for every point \(x \in X \).

Again, if given a fuzzy open set \(G \) of \(y \) in \(X \) with \(G(y) = 1 \) for all \(y \in X \), then there exists \(F \in \mathcal{N} \) such that \(F(y) \leq G \),

Where \(F = (G \times G) \cup ((X \setminus \{ y \}) \times (X \setminus \{ y \})) \).

That is \(F(y) (x) \leq G(x) \) for all \(x \in X \).

Therefore \(T_{\mathcal{N}} = \{ G \in \mathcal{I}^X / \text{If } y \in X \text{ is such that } G(y) = 1 \text{ then there exists } F \in \mathcal{N} \text{ such that } F(y) \leq G \} \).

Thus \(\mathcal{N} \) is compatible with \(X \).

Claim \(\mathcal{N} \) is complete.

We have to prove that every \(\mathcal{N} \)-Cauchy fuzzy filter is convergent.

It is enough to prove that a non-convergent fuzzy filter is not \(\mathcal{N} \)-Cauchy.

Suppose \(\mathcal{F} \) is a non-convergent fuzzy filter on \(X \). Then for each \(y \in X \) there exists an \(\alpha \)-shading \(U_y \) of \(y \) with \(U_y (y) > \alpha \) and \(U_y \in \mathcal{F} \).

But by theorem 4.3.3, every \(\alpha \)-shading of \(X \) by fuzzy open sets is refined by fuzzy entourages.
That is there exists \(D \in \mathcal{N} \) which refines \(\mathcal{U} = \{ U_x : x \in X \} \).

But this is not possible by our above argument. Therefore \(\mathcal{F} \) is not \(\mathcal{N} \)-Cauchy.

Thus \(\mathcal{N} \) is complete. Hence the theorem.

4.4.2 Corollary Each fuzzy \(\alpha \)-paracompact space is fuzzy topologically complete.

4.4.3 Theorem Suppose that \(\{ X_i : i \in I \} \) be a family of fuzzy \(\alpha \)-paracompact spaces. Then \(\bigcup_{i \in I} X_i \) is fuzzy topologically complete.

Proof

Proof follows from lemma 4.4.1 and theorem 3.4.5.