TABLE OF CONTENTS

ABBREVIATIONS i-vii

1. INTRODUCTION 1-10
 Epigenetics and cancer 3
 BRCA1 gene 6
 p16 gene 7
 E-cadherin gene 7
 HIC1 gene 8
 GST-pi gene 9
 Objectives 10

2. REVIEW OF LITERATURE 11-59
 2.1. Cancer 11
 2.1.1 Global Scenario 11
 2.1.2 Indian Scenario 13
 2.2 Breast Cancer 14
 2.2.1 Global Scenario 14
 2.2.2 Indian Scenario 16
 2.3 Classification of breast tumors 18
 2.3.1 Noninvasive Breast Cancers 19
 2.3.2 Invasive Breast Cancers 19
 2.4 Risk Factors of Breast Cancer 19
 2.4.1 Non-Genetic Factors 20
 2.4.1.1 Socioeconomic status 20
 2.4.1.2 Smoking 20
 2.4.1.3 Dietary Factors 20
 2.4.1.4 Benign Breast Disease 21
 2.4.1.5 Menarche and Menopause 21
 2.4.1.6 Obesity 21
 2.4.1.7 Pregnancy 21
 2.4.1.8 Environmental Factors 22
 2.4.1.9 Oral Contraceptives/ HRT 22
 2.4.2 Genetic Factors 22
2.4.2.1 Genetic Alterations 23
2.4.2.2 Family History 23

2.5 Prevention of Breast Cancer 23
2.5.1 Primary Prevention 23
2.5.2 Secondary Prevention 24
2.5.3 Signs and Symptoms of Breast Cancer 24
2.5.4 Treatment of Breast Cancer 24

2.6 Staging of Breast Cancer 25
2.6.1 Clinical Staging 25
2.6.2 Pathological Staging 25
2.6.2.1 TNM Classification 26
2.6.3 Histopathological Grading 27
2.6.4 Lymph Node Metastasis 28

2.7 Hereditary Breast Cancer 29

2.8 Sporadic Breast Cancer 29

2.9 Hormonal Factors and Breast Cancer 30

2.10 Genes Involved In Breast Cancer 31
2.10.1 Tumor Suppressor Genes 32
2.10.1.1 Breast Cancer Susceptibility Gene 1 (BRCA1) 32
2.10.1.2 Breast Cancer Susceptibility Gene 2 (BRCA2) 33
2.10.1.3 p53 Tumor Suppressor Gene 34
2.10.1.4 P16 INK4a Tumor Suppressor Gene 35
2.10.1.5 E-cadherin Gene 36
2.10.2 Proto-oncogene 37
2.10.3 DNA Repair genes 38
2.10.3.1 HIC-1 Gene 38
2.10.3.2 GSTPi Gene 45

2.11 Epigenetics 46
2.11.1 DNA Methylation 47
2.11.2 DNA Methyltransferases 48
2.11.3 How methylation represses transcription 51

2.12 Epigenetic alterations in Cancer 53
2.12.1 DNA Methylation and Cancer 53
2.12.2 Hypermethylation and Gene Silencing 53
2.12.3 Hypomethylation and Gene Activation 55
2.13 Methods of Studying Methylation 57
 2.13.1 Bisulfite Modification 58
 2.13.2 Methylation Specific Polymerase Chain Reaction 58

3. MATERIALS AND METHODS 60-71
 3.1 General Chemicals 60
 3.2 Blotting membranes and Films 60
 3.3 Plastic ware and glassware 60
 3.4 Antibodies, Oligonucleotides and Enzymes 61
 3.5 Biological Specimens 61
 3.5.1 Tissue Biopsies 61
 3.6 Methods 62
 3.6.1 DNA Isolation from Breast Cancer Tissue Specimens 62
 3.6.2 Quantitation of Genomic DNA using Agarose Gel Electrophoresis 63
 3.6.3 Sodium Bisuphite Modification of DNA 63
 3.6.4 Methylation Specific Polymerase Chain Reaction (MSP) 64
 3.6.5 Preparation of Protein Extract 65
 3.6.6 Western Blotting and ECL Detection 67
 3.6.6.1 SDS-Poly-acrylamide Gel Electrophoresis 67
 3.6.6.2 Immunoblotting-Semi-dry Transfer and ECL Detection 68
 3.6.6.3 Blocking and Antibody Interaction 69
 3.6.6.4 Enhanced Chemiluminescence (ECL) Detection 69
 3.6.7 Immuno-histochemistry (IHC) 70
 3.6.8 Statistical Analysis 71

RESULTS 72-120
4. Clinico-pathological attributes 72
 4.1 Type of breast cancer 72
 4.2 Age distribution 72
 4.3 Menstrual status 72
 4.4 Clinical Staging 72
 4.5 Lymph Node status 73
5. Analysis of promoter hypermethylation pattern in specific tumor suppressor genes in sporadic breast carcinogenesis using methylation specific PCR (MSP)

5.1 Quality and quantity of genomic DNA
5.2 Methylation pattern of BRCA1, p16, GSTP1, HIC1 and CDH1 genes

6. Comparison of gene methylation pattern with patient’s clinicopathological attributes

6.1 Methylation pattern relative to patient menopausal status
6.2 Promoter methylation status relative to T-stage
6.3 Promoter methylation status relative to nodal status
6.4 Promoter methylation status relative to ER status
6.5 Promoter methylation status relative to PR status
6.6 Promoter methylation status relative to HER2/neu status

7. Analysis of expression pattern of brca1, p16, GSTP1, HIC1 and CDH1 proteins in breast cancer patients

8. In-situ expression profile of BRCA1, p16, GSTP1, HIC1 and CDH1 proteins

8.1 Comparison of in situ expression level with menopausal status
8.2 Comparison of in situ expression level with patient’s tumor stage
8.3 Comparison of in situ expression level with lymph node status
8.4 Comparison of in situ expression level with ER status
8.5 Comparison of in situ expression level with PR status
8.6 Comparison of in situ expression level with HER2/neu status
8.7 Comparison of promoter methylation of five specific genes between Triple negative and triple positive breast tumors
8.8 Comparison of promoter methylation of five specific genes between ER/PR positive and ER/PR positive breast tumors

DISCUSSION 121-143
SUMMARY 144-148
CONCLUSION 149-150
REFERENCES 151-177
ANNEXURES