List of Figures

1.1 Typical pattern recognition system structure [144] 4
1.2 *Examples of visual patterns.* (a) a Face (b) a Line drawing (c) a Chair
(d) a Computer monitor ... 5
1.3 Rotations of pattern ‘A’ .. 5
1.4 Scaling of pattern ‘A’ ... 6
1.5 Variants of pattern ‘A’ .. 6
1.6 Some occlusions of pattern ‘A’ .. 6
1.7 (a) Feature extraction process in pattern recognition (b) Piecewise
(Linear) decision regions. (c) Hyperbolic (Quadratic) decision regions. 8
1.8 *Effect of outliers in Waveform data [165].* (a) The eigenvector in the
direction of maximum variance (b) Outliers data are circled. Observe
that the eigenvector is pulled towards outliers thus spoiling the direc-
tion of maximum variance. ... 17

2.1 Main classification diagram of PCA methods 31
2.2 Classification of FP-PCA (sub-pattern based PCA) methods 32
2.3 Classification of whole-pattern based PCA (global PCA) methods .. 33
2.4 Classification of PCA methods for outliers and missing values data . 34

3.1 Steps in generalized feature partitioning framework 89
3.2 *Partitioning by contiguous selection of features.* (a) Partitioning a pa-
ttern, X_1 into sub-patterns (blocks), X_{1}^{1}, X_{1}^{2}, X_{1}^{3} of different sizes. (b)
Partitioning a pattern, X_1 into sub-patterns (blocks), X_{1}^{1}, X_{1}^{2}, X_{1}^{3}, X_{1}^{4},
of same size. ... 91
3.3 *Partitioning by random selection of features.* (a) Partitioning a pat-
ttern, X_1 into sub-patterns (blocks), X_{1}^{1}, X_{1}^{2}, X_{1}^{3}, of different sizes. (b)
Partitioning a pattern into sub-patterns (blocks), X_{1}^{1}, X_{1}^{2}, X_{1}^{3}, X_{1}^{4}, of
same size. ... 92
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4 (a)</td>
<td>Partitioning with common (overlapping) features. A pattern, X_1, is partitioned into sub-patterns (blocks), X_1^1, X_1^2, X_1^3. Overlapping features between sub-patterns are indicated within a circle. (b) Partitioning by using a segmentation technique. The sub-patterns (blocks) may have arbitrary shapes.</td>
</tr>
<tr>
<td>3.5</td>
<td>Grouping sub-patterns of patterns, X_1, X_2, X_3, X_4, into single sub-pattern set, Q.</td>
</tr>
<tr>
<td>3.6</td>
<td>Grouping sub-patterns of patterns, X_1, X_2, X_3, X_4, into multiple sub-pattern sets, P_1, P_2.</td>
</tr>
<tr>
<td>3.7 (a)</td>
<td>Combining local features obtained from sub-patterns by concatenation which forms reduced patterns. (b) Combining local features obtained from sub-patterns by exploiting inter-block correlations or dependencies (Subsection 3.3.8) to form reduced patterns.</td>
</tr>
<tr>
<td>3.8</td>
<td>Loss of covariance structure with 2 sub-patterns (blocks). (a) Covariance structure with 8 features before partitioning. Please note that $c_{ij} = c_{ji}$, (b) Covariance structure after partitioning into 2 equally-sized blocks, (c) The covariances lost due to partitioning, which indicates missing of some dependency information.</td>
</tr>
<tr>
<td>3.9</td>
<td>Loss of covariance structure with 4 sub-patterns (blocks). (a) Covariance structure with 8 features before partitioning. Please note that $c_{ij} = c_{ji}$, (b) Covariance structure after partitioning into 4 equally-sized blocks, (c) The covariances lost due to the partitioning, which indicates missing of some dependency information. Comparing with Fig. 3.8, it is clear that more covariances are lost with more number of blocks.</td>
</tr>
<tr>
<td>3.10</td>
<td>Inter-sub-pattern correlations in Musk Data [165].</td>
</tr>
<tr>
<td>3.11</td>
<td>Inter-sub-pattern correlations in Waveform Data [165].</td>
</tr>
<tr>
<td>3.12</td>
<td>24 Feature arrangements (orders) for a pattern of 4 features.</td>
</tr>
<tr>
<td>4.1</td>
<td>Visualizing SubXPCA method Part-I</td>
</tr>
<tr>
<td>4.2</td>
<td>Visualizing SubXPCA method Part-II</td>
</tr>
<tr>
<td>4.3</td>
<td>Summarization of variance in PCs for Waveform data. SubXPCA and PCA show similar values and are superior to SubPCA in terms of summarization of variance. 3 PVs (eigenvectors) per sub-pattern set were used for SubXPCA.</td>
</tr>
<tr>
<td>4.4</td>
<td>Summarization of variance in PCs for Musk data. SubXPCA and PCA show similar values and are superior to SubPCA in terms of summarization of variance. 8 PVs (eigenvectors) per sub-pattern set were used for SubXPCA.</td>
</tr>
</tbody>
</table>
4.5 **Summarization of variance in PCs for Breast Cancer data.** SubXPCA and PCA show same values and are superior to SubPCA in terms of summarization of variance. 4 PVs (eigenvectors) per sub-pattern set were used for SubXPCA. ... 132

4.6 **Summarization of variance in PCs for Forest data.** SubXPCA and PCA show same values and are superior to SubPCA in terms of summarization of variance. 7 PVs (eigenvectors) per sub-pattern set were used for SubXPCA. ... 133

4.7 **Classification rate for Musk data.** SubXPCA shows relatively better classification rates as compared to both PCA and SubPCA methods. It is clear that SubXPCA shows higher classification rate by using lesser principal components as compared to other two methods. We used 8 PVs (eigenvectors) per sub-pattern set for SubXPCA. The average of classification rates out of 10 experiments is shown here. 137

4.8 **Execution time for Musk data.** SubXPCA is computationally better than PCA and competitive to SubPCA. We used 8 PVs (eigenvectors) per sub-pattern set for SubXPCA. ... 138

4.9 **Classification rate for Waveform data.** SubXPCA shows relatively better classification rates with different PVs (eigenvectors) as compared to SubPCA method. It is observed that SubXPCA and PCA show higher classification rate by using lesser principal components as compared to SubPCA. We used 2 PVs (eigenvectors) per sub-pattern set for SubXPCA. The average of classification rates out of 10 experiments is shown here. 139

4.10 **Classification rate for Forest data.** SubXPCA shows better classification rates as compared to SubPCA. SubXPCA coincides with PCA’s classification. It is noted that SubXPCA and PCA show higher classification rate by using lesser principal components as compared to SubPCA. Hence the curve related to PCA is not clear in the figure. 7 PVs (eigenvectors) per sub-pattern set were used for SubXPCA. The average of classification rates out of 10 experiments is shown here. ... 140

4.11 **Classification rate for ORL faces.** SubXPCA shows better recognition rate by using lesser principal components as compared to SubPCA. SubXPCA also shows its superiority as compared to PCA in terms of maximum recognition rate. We used 9 PVs (eigenvectors) per sub-pattern set for SubXPCA. ... 141

4.12 **Execution time for ORL faces.** SubXPCA and SubPCA are computationally similar and much superior to PCA. 9 PVs (eigenvectors) per sub-pattern set were used for SubXPCA. 142
4.13 Classification rate for CMU faces. SubXPCA shows better recognition rate as compared to SubPCA. SubXPCA also shows its superiority as compared to PCA in terms of maximum recognition rate. Please note that SubXPCA shows higher recognition rate by using lesser principal components as compared to SubPCA and PCA. We used 40 PVs (eigenvectors) per sub-pattern set for SubXPCA. .. 143

4.14 Execution time for CMU faces. SubXPCA is computationally better than PCA and competitive to SubPCA. 40 PVs (eigenvectors) per sub-pattern set were used for SubXPCA. .. 144

4.15 Classification rate for Yale faces. SubXPCA is better than SubPCA for 10, 20 PVs (eigenvectors); coincides with SubPCA for other PVs (eigenvectors) in terms of recognition. Please note that both SubXPCA and SubPCA outperform PCA in terms of recognition. We used 8 PVs (eigenvectors) per sub-pattern set for SubXPCA. .. 145

4.16 Execution time for Yale faces. SubXPCA and SubPCA are computationally similar and much superior to PCA. We used 8 PVs (eigenvectors) per sub-pattern set for SubXPCA. .. 146

4.17 Overlapping versus Non-overlapping sub-patterns for Waveform data. SubPCA improves its classification rate slightly with overlapping of sub-patterns. However SubXPCA with non-overlapping sub-patterns option outperforms all other methods. .. 147

4.18 Overlapping versus Non-overlapping sub-patterns for Forest data. Both SubPCA and SubXPCA coincide with respect to classification for overlapping case and also for non-overlapping case. SubPCA with overlapping sub-patterns shows poor performance as compared to both non-overlapping sub-patterns with either SubPCA or SubXPCA. 148

4.19 Impact of Feature orders in Musk data. SubXPCA shows more robustness against different feature orders as compared to SubPCA. SubXPCA uses 11 PVs (eigenvectors) for every sub-pattern set. 149

4.20 Impact of Feature orders in Wine data. SubXPCA shows more robustness against different feature orders as compared to SubPCA. SubXPCA uses 5 PVs (eigenvectors) for every sub-pattern set. 150

5.1 Visualizing SIMPCA method ... 161

5.2 Visualizing FLPCA method ... 162

5.3 Comparison of recognition rate for ORL face data. FLPCA shows more consistent performance across the number of sub-images as compared to modPCA and SIMPCA. FLPCA shows highest recognition rate of all the methods. FLPCA and SIMPCA also outperform PCA. 177
5.4 Comparison of computational time for ORL face data. FLPCA and SIMPCA show better efficiency across the number of sub-images as compared to modPCA. FLPCA and SIMPCA also show less computational time as compared to IMPCA. PCA shows competitive complexity to SIMPCA and FLPCA because we used the efficient implementation [103] instead of the original implementation of PCA. 178

5.5 Comparison of recognition rate for Yale face data. FLPCA shows consistently good performance irrespective of number of sub-images. SIMPCA shows more consistency as compared to modPCA. FLPCA and SIMPCA also outperform PCA. 179

5.6 Comparison of computational time for Yale face data. FLPCA and SIMPCA show better efficiency across various number of sub-images as compared to modPCA. FLPCA and SIMPCA also outperform PCA. 180

5.7 Comparison of recognition rate for UMIST face data. FLPCA shows better consistency across various number of sub-images as compared to modPCA and SIMPCA. FLPCA and SIMPCA show highest recognition rate as compared to PCA, IMPCA (2DPCA) and modPCA methods. 181

5.8 Comparison of computational time for UMIST face data. FLPCA and SIMPCA show better efficiency across various number of sub-images as compared to modPCA. FLPCA and SIMPCA also outperform PCA. 182

5.9 Comparison of recognition rate for PolyU palmprint data. FLPCA and SIMPCA show better consistency across various number of sub-images as compared to modPCA. FLPCA and SIMPCA also outperform PCA. 183

5.10 Comparison of computational time for PolyU palmprint data. FLPCA and SIMPCA show better efficiency across various number of sub-images as compared to modPCA. FLPCA and SIMPCA also show better computational time as compared to IMPCA (2DPCA). PCA shows competitive time complexity to SIMPCA and FLPCA because we used the efficient implementation [103] instead of the original implementation of PCA. 184

5.11 Execution time versus Recognition rate with respect to 3 face data sets (UMIST, ORL, Yale). FLPCA and SIMPCA points occupy left top corner part of the chart, forming a cluster of superior recognition rate at less computational overhead as compared to other methods. 185
6.1 *Summarization of variance in first 3 local principal components (i.e. 1 PC per block) for Waveform data.* Each pattern is divided into 3 blocks. Please note that SubXPCA (FP-PCA-Type-III) shows better summarization of variance as compared to the summarization of variance by SubPCA (FP-PCA-Type-I).

6.2 *Summarization of variance in first 6 local principal components (i.e. 2 PCs per block) for Waveform data.* Each pattern is divided into 3 blocks. Please note that SubXPCA (FP-PCA-Type-III) moves closer to PCA’s (Holistic PCA) summarization of variance as the number of PCs increases (Compare with Fig. 6.1). SubPCA (FP-PCA-Type-I) does not move closer to PCA’s (Holistic PCA) summarization of variance.

6.3 *Summarization of variance in first 9 local principal components (i.e. 3 PCs per block) for Waveform data.* Each pattern is divided into 3 blocks. Please note that SubXPCA (FP-PCA-Type-III) moves closer to PCA’s (Holistic PCA) summarization of variance as the number of PCs increases (Compare with Figs. 6.1-6.2). SubPCA (FP-PCA-Type-I) does not move closer to PCA’s (Holistic PCA) summarization of variance.

6.4 *Summarization of variance in first 12 local principal components (i.e. 4 PCs per block) for Waveform data.* Each pattern is divided into 3 blocks. Please note that SubXPCA (FP-PCA-Type-III) moves closer to PCA’s (Holistic PCA) summarization of variance as the number of PCs increases (Compare this figure with Figs. 6.1-6.3). SubPCA (FP-PCA-Type-I) does not move closer to PCA’s (Holistic PCA) summarization of variance.

6.5 *Summarization of variance in first 15 local principal components (i.e. 5 PCs per block) for Waveform data.* Each pattern is divided into 3 blocks. Please note that SubXPCA (FP-PCA-Type-III) moves closer to PCA’s (Holistic PCA) summarization of variance as the number of PCs increases (Compare this figure with Figs. 6.1-6.4). SubPCA (FP-PCA-Type-I) does not move closer to PCA’s (Holistic PCA) summarization of variance.

6.6 *Summarization of variance in first 18 local principal components (i.e. 6 PCs per block) for Waveform data.* Each pattern is divided into 3 blocks. Please note that SubXPCA (FP-PCA-Type-III) moves closer to PCA’s (Holistic PCA) summarization of variance as the number of PCs increases (Compare this figure with Figs. 6.1-6.5). SubPCA (FP-PCA-Type-I) does not move closer to PCA’s (Holistic PCA) summarization of variance.
6.7 *Summarization of variance in first 21 local principal components (i.e. 7 PCs per block) for Waveform data.* Each pattern is divided into 3 blocks. Please note that SubXPCA (FP-PCA-Type-III) coincides with PCA’s (Holistic PCA) summarization of variance (Compare this figure with Figs. 6.1-6.6). SubPCA (FP-PCA-Type-I) does not coincide with PCA’s (Holistic PCA) summarization of variance. 226

6.8 *Summarization of variance in first 7 local principal components (i.e. 1 PC per block) for Waveform data with 7 blocks per pattern.* Please note that SubXPCA’s (FP-PCA-Type-III) summarization of variance is better than SubPCA’s (FP-PCA-Type-I) summarization of variance. 228

6.9 *Summarization of variance in first 14 local principal components (i.e. 2 PCs per block) for Waveform data with 7 blocks per pattern.* Please note that SubXPCA (FP-PCA-Type-III) moves closer to PCA’s (Holistic PCA) summarization of variance as the number of PCs increases (Compare this figure with Fig. 6.8). SubPCA (FP-PCA-Type-I) does not move closer to PCA’s (Holistic PCA) summarization of variance. 229

6.10 *Summarization of variance in first 21 local principal components (i.e. 3 PCs per block) for Waveform data with 7 blocks per pattern.* Please note that SubXPCA (FP-PCA-Type-III) coincides with PCA’s (Holistic PCA) summarization of variance (Compare this figure with Figs. 6.8-6.9). It is clear that SubPCA (FP-PCA-Type-I) does not coincide with PCA’s (Holistic PCA) summarization of variance. 230

6.11 *Impact of feature orders on classical PCA (Holistic PCA).* PCA shows closer summarization of variances with varied number of PCs in Waveform data for 5 feature orders (F1, F2,..., F5), which is the indication of PCA’s (Holistic PCA) more feature order independence. 234

6.12 *Impact of feature orders on SubPCA (FP-PCA-Type-I).* SubPCA does not show closer summarization of variances with varied number of PCs in Waveform data for 5 feature orders (F1, F2,..., F5), which is the indication of SubPCA’s (FP-PCA-Type-I) more feature order dependence. Each pattern is divided into 3 sub-patterns. 235

6.13 *Impact of feature orders on SubXPCA (FP-PCA-Type-III).* SubXPCA shows closer summarization of variances with varied number of PCs in Waveform data for 5 feature orders (F1, F2,..., F5), which is the indication of SubXPCA’s (FP-PCA-Type-III) more feature order independence. Each pattern is divided into 3 sub-patterns. 236

6.14 *Summarization of variance in first 92 local principal components (i.e. 1 PC per block) for ORL face data with 92 blocks per pattern.* For classical PCA (Holistic PCA), we used first 200 PCs. Please note that SubXPCA’s (FP-PCA-Type-III) summarization of variance is better than SubPCA’s (FP-PCA-Type-I) summarization of variance. 237
6.15 *Summarization of variance in first 200 local principal components for ORL face data with 92 blocks per pattern.* We choose initially 276 PCs (3 PCs per block). Further out of these 276 PCs, we consider only top 200 PCs. Please note that SubXPCA (FP-PCA-Type-III) moves closer to PCA’s (Holistic PCA) summarization of variance as the number of local PCs per block increases (Compare this figure with Fig. 6.14). SubPCA (FP-PCA-Type-I) does not move closer to PCA’s (Holistic PCA) summarization of variance.

6.16 *Summarization of variance in first 200 local principal components for ORL face data with 92 blocks per pattern.* We choose initially 460 PCs (5 PCs per block). Further out of these 460 PCs, we consider only top 200 PCs. Please note that SubXPCA (FP-PCA-Type-III) moves closer to PCA’s (Holistic PCA) summarization of variance as the number of local PCs per block increases (Compare this figure with Figs. 6.14-6.15). SubPCA (FP-PCA-Type-I) does not move closer to PCA’s (Holistic PCA) summarization of variance.

6.17 *Summarization of variance in first 200 local principal components for ORL face data with 92 blocks per pattern.* We choose initially 920 PCs (10 PCs per block). Further out of these 920 PCs, we consider only top 200 PCs. Please note that SubXPCA (FP-PCA-Type-III) moves closer to PCA’s (Holistic PCA) summarization of variance with increased number of local PCs per block (Compare this figure with Figs. 6.14-6.16). SubPCA (FP-PCA-Type-I) does not move closer to PCA’s (Holistic PCA) summarization of variance.

6.18 *Impact of block size on summarization of variance for ORL face data (with less number of local PCs per block).* Each pattern is divided into (i) 92, (ii) 184 and (iii) 368 blocks. We choose initially (i) 368 PCs (4 PCs from each of 92 blocks), (ii) 368 PCs (2 PCs from each of 184 blocks) and (iii) 368 PCs (1 PC from each of 368 blocks) respectively from these 3 cases. Further out of these 368 PCs, we consider only top 200 PCs for each case. It is clear that SubXPCA (FP-PCA-Type-III) shows better summarization of variance as compared to SubPCA (FP-PCA-Type-I) with different block sizes or number of blocks.
6.19 Impact of block size on summarization of variance for ORL face data (with more local PCs per block). Each pattern is divided into (i) 92, (ii) 184 and (iii) 368 sub-patterns. We choose initially (i) 460 PCs (5 PCs from each of 92 blocks), (ii) 920 PCs (5 PCs from each of 184 blocks) and 1840 PCs (5 PCs from each of 368 blocks) respectively from these 3 cases. Further out of these 460, 920 and 1840 local PCs, we consider only top 200 PCs for each case. SubXPCA (FP-PCA-Type-III) shows relatively better independence of block-size or number of blocks as compared to SubPCA (FP-PCA-Type-I), with increased number of local PCs per block. Compare this figure with Fig. 6.18.

7.1 An example of clustering produced by DBSCAN
7.2 An example of clustering produced by 4C or FP-4C
7.3 The flow chart of proposed FP-4C algorithm-Part I
7.4 The flow chart of proposed FP-4C algorithm-Part II (To find Correlation dimension of $N_\epsilon(X_i)$ using SubXPCA method)

8.1 Comparison of average classification rates for UCI Musk data. SubXPCA based subspace classifier (FP-SC) outperforms both PCA based and SubPCA-based subspace classifiers. It is clear that SubXPCA based method (FP-SC) shows (i) 7% higher classification rate as compared to PCA based subspace classifier and (ii) 2.5% higher classification rate by using less number of projection eigenvectors as compared to SubPCA based subspace classifier. SubXPCA based method uses 1 eigenvector from each of sub-pattern sets.

8.2 Comparison of computational time for UCI Musk data. SubXPCA based subspace classifier (FP-SC) shows less computational time as compared to PCA and SubPCA based subspace classifiers.

8.3 Comparison of best classification rates for UCI Musk data. SubXPCA based subspace classifier (FP-SC) outperforms both PCA based and SubPCA-based subspace classifiers. It is clear that SubXPCA based method (FP-SC) shows (i) 12.4% higher classification rate as compared to PCA based subspace classifier and (ii) 8.4% higher classification rate by using less number of projection eigenvectors as compared to SubPCA based subspace classifier. SubXPCA based method uses 1 eigenvector from each of sub-pattern sets.
8.4 Comparison of PCA, SubPCA and SubXPCA based subspace classifiers with respect to both computational time and classification rate for UCI Musk data. SubXPCA based method (FP-SC) forms all its points at the top-left corner of the plot, which is the indication of high classification rate at less computational time. Other two methods have the points concentrated away from top-left corner which indicates that both PCA and SubPCA based classifiers either show lower classification rate or high computational time or both. 280

8.5 Comparison of average classification rates with varied number of sub-patterns (blocks) for UCI Musk data. SubXPCA based subspace classifier (FP-SC) consistently shows good performance as compared to SubPCA based subspace classifier with different number of blocks. Please note that PCA based classifier shows lower classification rate as compared to (i) FP-SC classifier (with all \(k\) values) and (ii) SubPCA based classifier (except for \(k = 15, 33\)) 281

8.6 Comparison of best classification rates with varied number of sub-patterns (blocks) for UCI Musk data. SubXPCA based subspace classifier (FP-SC) consistently shows good performance as compared to SubPCA based subspace classifier with different number of blocks. Please note that PCA based classifier shows lower classification rate as compared to (i) FP-SC classifier (with all \(k\) values) and (ii) SubPCA based classifier (except for \(k = 15, 33\)). 282

8.7 Comparison of computational time with different number of blocks for UCI Musk data. It is to be noted that SubXPCA based subspace classifier (FP-SC) is computationally more efficient as compared to other two methods. Also SubPCA based method shows less computational time over PCA based subspace classifier. 283

8.8 Comparison of average classification rates for UCI Waveform data. SubXPCA based subspace classifier shows slight improvement over PCA based method with respect to its maximum of plotted classification rates. However, SubXPCA based method shows nearly 2% higher classification as compared to SubPCA based subspace classifier with respect to its maximum of plotted classification rates. SubXPCA uses 1 and 2 projection eigen vectors (PVs) per sub-pattern set. 284

8.9 Comparison of computational time for UCI Waveform data. SubXPCA based subspace classifier (FP-SC) shows less computational time as compared to PCA and SubPCA based subspace classifiers. 285

8.10 Comparison of best classification rates for UCI Waveform data. SubXPCA based subspace classifier shows slight improvement over PCA and SubPCA based methods with respect to its maximum of plotted classification rates. SubXPCA uses 1 and 2 projection eigen vectors (PVs) per sub-pattern set. 286
8.11 *Comparison of average classification rates with varied number of sub-patterns (blocks) for UCI Waveform data.* SubXPCA based subspace classifier (FP-SC) consistently shows good performance as compared to SubPCA based subspace classifier with different number of blocks. SubXPCA based method shows slight improvement over PCA based subspace classifier. It is clear that SubPCA based classifier shows lower performance as compared to other two methods. 287

8.12 *Comparison of best classification rates with varied number of sub-patterns (blocks) for UCI Waveform data.* SubXPCA based subspace classifier (FP-SC) consistently shows good performance as compared to SubPCA based subspace classifier with different number of blocks. SubXPCA based method shows slight improvement over PCA based subspace classifier. It is clear that SubPCA based classifier shows lower performance as compared to other two methods. 288

8.13 *Comparison of computational time with different number of blocks for UCI Waveform data.* It is to be noted that SubXPCA based subspace classifier (FP-SC) is computationally more efficient as compared to other two methods. Also SubPCA shows less computational time over PCA based subspace classifier. 289