Appendix I: The Radon Transform

Introduction

The Radon transform is a fundamental tool in many areas. For example, in reconstruction of an image from its projections (CT Scanning). An important problem in digital image processing is to reconstruct a cross-section of an object from several images of its projections. A projection is a shadowgram obtained by illuminating an object by penetrating radiation. The below figure shows a typical method for obtaining projections. Each horizontal line shown in this figure is a one-dimensional projection of a horizontal slice of the object. Each pixel of the projected image represents the total absorption of the X-ray along its path from the source to the detector. By routing the source-detector assembly around the object, projections for several different angles can be obtained. The goal of image reconstruction from projections is to obtain an image of a cross-section of the object from these projections. Imaging systems that generate such slice views are called CT (computerized tomography) scanners [Deans, 2007].

An X-ray CT scanning system and 3D projection system
The Radon transform is the underlying fundamental concept used for CT scanning, as well for a wide range of other disciplines, including radar imaging, geophysical imaging, nondestructive testing and medical imaging.

The 3D Radon transform is defined using 1D projections of a 3D object $f(x, y, z)$ where these projections are obtained by integrating $f(x, y, z)$ on a plane, whose orientation can be described by a unit vector \vec{a}. Geometrically, the continuous 3D Radon transform maps a function in \mathbb{R}^3 into the set of its plane integrals in \mathbb{R}^3. A 3D function $f(\vec{x}) \triangleq f(x, y, z)$ and a plane whose representation is given using the normal \vec{a} and the distance s of the plane from the origin, the 3D continuous Radon transform of f for this plane is defined by [Helgason, 1999] [Alexander & Ramm, 1996]

$$
\mathcal{R}f(\vec{a}, s) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\vec{x}) \delta(\vec{x}^T \vec{a} - s) d\vec{x}
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z) \delta(x \sin \theta \cos \varphi + y \sin \theta \sin \varphi + z \cos \theta - s) dx \, dy \, dz
$$

(1)

where $\vec{x} = [x, y, z]^T$, $a = [\sin \theta \cos \varphi, y \sin \theta \sin \varphi, z \cos \theta]^T$, and δ is Dirac’s delta function defined by $\delta(x) = 0$, $x \neq 0$ and $\int_{-\infty}^{\infty} \delta(x) dx = 1$.

The Radon transform maps the spatial domain (x, y, z) to the domain (\vec{a}, s). Each point in the (\vec{a}, s) space corresponds to a plane in the spatial domain (x, y, z). The 3D Radon transform satisfies the 3D slice theorem, which states that the central slice $\hat{f}(\vec{a})$ in the direction \vec{a} of the 3D Fourier transform of $f(\vec{x})$ equals $\mathcal{R}f(\vec{a}, \xi)$, that is
\[\hat{Rf}(\vec{a}, \xi) = \hat{f}(\xi \vec{a}) = \hat{f}(\xi \sin \theta \cos \varphi, \xi \sin \theta \sin \varphi, \xi \cos \theta) \] (2)

For modern application it is important to have a discrete analogues of $\mathcal{R}f$ for 3D digital images $I = (I(u,v,w) : -n/2 \leq u,v,w < n/2)$. The definition of the 3D discrete Radon transform should satisfy the following properties:

i. **Algebraic exactness**: The transform should be based on a clear and rigorous definition.

ii. **Geometric Fidelity**: The transform should be based on true geometric planes rather than planes which wrap around or are otherwise non-geometric.

iii. **Speed**: The transform should be rapidly computable.

iv. **Inevitability**: The transform should be invertible on its range. Moreover, there should be a fast reconstruction algorithm.

v. **Parallels with continuum theory**: The transform should obey relations which parallel with those of the continuum theory.

The 3D discrete Radon transform is defined by summing the interpolated samples of a discrete array $I(u,v,w)$ lying on planes which satisfy certain constraints. Formally, given a plane whose explicit equation is $z = s_1 x + s_2 y + t$, we define the operator $R_3 I$ for the plane given in above equation by:

\[
R_3 I(s_1, s_2, t) = \sum_{u=-n/2}^{n/2-1} \sum_{v=-n/2}^{n/2-1} \tilde{I}_3(u, v, s_1 u + s_2 v + t),
\] (3)

where $\tilde{I}_3(u, v, z) = \sum_{w=-n/2}^{n/2-1} I(u, v, w) D_m(z - w), \ u, v = -n2, ..., n2-1, z \in \mathbb{R}$ and D_m is the Dirichlet kernel given by $D_m(t) = \frac{\sin(\pi t)}{m \sin(\pi t/m)}$, $m = 3n + 1$. The notation \tilde{I}_3 used, since the we interpolate in the z-direction, which we consider the third direction. We refer to the $x-$, $y-$, $z-$ directions, as the first, second and third directions, respectively. By observation a definition of three types of planes "x-planes","y-planes"", and "z-planes" are defined as below:

i. A plane of the form $x = s_1 y + s_2 z + t$ where $|s_1| \leq 1, |S_2| \leq 1$ is called x-plane.
ii. A plane of the form \(y = s_1 x + s_2 z + t \) where \(|s_1| \leq 1, |S_2| \leq 1 \) is called y-plane.

iii. A plane of the form \(z = s_1 x + s_2 y + t \) where \(|s_1| \leq 1, |S_2| \leq 1 \) is called z-plane.

We define three summation operators, one for each type of plane (x-plane, y-plane, z-plane). Each summation operator takes a plane and an image \(I \) and calculates the sum of the samples from \(I \) on the plane. More precisely, it calculates the sum of the interpolated samples of \(I \) on the plane.