LIST OF FIGURES AND PLATES

FIGURES

Fig. 1.1 Precambrian terrains in Indian subcontinent

Fig. 1.2 Southern India showing different granulite blocks and major Proterozoic shear zones

Fig. 2.1 Geological map of MGB

Fig. 3.1 Traverses made during the field

Fig. 4.1 Sampling locations for EPMA

Fig. 4.2 Garnet composition from garnet-biotite gneiss of MGB

Fig. 4.3 Variation in garnet composition from rim to core (Sample: CK16)

Fig. 4.4 Garnet composition from charnockite of MGB

Fig. 4.5 Variation in garnet composition from rim to core (Sample: CK58)

Fig. 4.6 Garnet composition from garnet-biotite-cordierite gneiss of ACS

Fig. 4.7 Variation in garnet composition from rim to core (Sample: CK37)

Fig. 4.8 Garnet composition from garnet-biotite gneiss of ACS

Fig. 4.9 Variation in garnet composition from rim to core (Sample: CK39)

Fig. 4.10 Garnet composition from charnockite of the ACS

Fig. 4.11 Variation in garnet composition from rim to core (Sample: CK40)

Fig. 4.12 Biotite compositions plotted in the "ideal biotite plane" diagram

Fig. 4.13 Si vs Ti plot for biotites showing primary and secondary biotites in the samples from MGB and ACS

Fig. 4.14 Feldspar composition from different rocks of MGB & ACS

Fig. 4.15 Clinopyroxene composition from the granulites of MGB

Fig. 4.16 Plot for geothermometry of different rocks under study with respect to $\text{Al}_2\text{Si}_3\text{O}_8$ triple junction using all possible garnet-biotite thermometers and garnet-plagioclase-orthopyroxene-quartz barometer.

Fig 4.17 Pressure-temperature fields of the rocks from MGB and ACS

Fig. 5.1 Hexagonal and Rhombohedral lattice of graphite
Fig. 5.2 Graphite sample locations

Fig. 5.3 X-ray powder diffraction (002) peaks of selected graphite samples

Fig. 5.4 Interpannar spacing d(002) vs crystallite size, Lc(002) for the present studied graphite

Fig. 5.5 Degree of graphitization of the graphite from the present study compared with the linear relationship for Ryoke pelites of Wada et al. (1994).

Fig. 5.6 Comparison of metamorphic temperature of the MGB graphite derived from the curve of Ryoke pelites with the calculated temperatures

Fig. 5.7 Raman spectra of graphite samples from MGB

Fig. 5.8 Histogram plot of the existing carbon isotope data from SGT, in comparison with the isotope data of the MGB graphite

Fig. 6.1 Sample locations of fluid inclusion studies

Fig. 6.2 Temperature of melting (T\textsubscript{M}) of monophase CO\textsubscript{2} inclusions

Fig. 6.3 Temperature of homogenisation (T\textsubscript{H}) of CO\textsubscript{2} in monophase and biphase inclusions

Fig. 6.4 State of total homogenisation of the inclusions from different samples

Fig. 6.5 Relationship between temperature of homogenisation and density of CO2 bearing inclusions

Fig. 6.6 P-T diagram showing CO2 isochores and proposed fields of inclusions in the present study

Fig. 7.1 Location of samples selected for monazite dating

Fig. 7.2 Weighted-histogram representation of the investigated samples

Fig. 7.3 Isochrones plotted from Th-Pb data

Fig. 7.4 U-Th-age diagram for the investigated samples displaying the relationship between individual ages and U-Th content.

Fig. 7.5 Th equivalent age for the investigated samples

PLATES

Plates 3.1-3.6 Field occurrence of various rock types from the study area

Plates 3.7-3.36 Photomicrographs of different mineral assemblages in the rocks under study
Plates 4.1-4.9 Photomicrographs explaining different reaction textures in the samples selected for EPMA

Plates 5.1-5.4 Field photos of graphite occurrence in MGB

Plates 6.1-6.6 Photomicrographs showing different types of fluid inclusions in the rocks under study

Plate 6.7 Fluid inclusion laboratory at IIT Bombay

Plates 6.8-6.9 Behaviour of fluid inclusions during microthermometry

Plate 6.10 Morphology of fluid inclusions showing effects of re-equilibration

Plates 7.1-7.3 Photo showing field occurrences of the rocks selected for monazite dating