Chapter 4
CHAPTER-IV

EFFECTS OF MASS TRANSFER AND ROTATION ON FREE CONVECTION FLOW PAST A PLATE WITH TIME DEPENDENT SUCTION IN NON-HOMOGENEOUS POROUS MEDIUM

ABSTRACT

In the present chapter effects of mass transfer and rotation on the unsteady free convection flow of an incompressible, homogeneous, electrically conducting, viscous fluid past an infinite porous vertical plate bounded by time dependent porous medium is studied. It is considered that the plate is subjected to time dependent suction velocity and the flow is under the influence of transversely applied uniform magnetic field. The effects of important parameters on primary and secondary velocity and corresponding skin-friction are discussed with the help of graph and tables.

1. INTRODUCTION

In nature and in industries, many transport processes exists, where the transfer of heat and mass takes place as a result of combined buoyancy effects of thermal diffusion and diffusion of chemical species. The phenomena of heat and mass transfer also takes place in chemical processing industry such as food processing
and polymer production. In addition heat and mass transfer effects in flow of fluids have application in engineering and technology.

A comprehensive study on the theory of rotating fluids and theory of heat transfer has been, respectively, presented by Greenspan [1968] and Morgan [1975]. Several authors including Morgan [1951], Kapur & Malik [1960], Rao & Gupta [1966], Thorneiy [1968], Nanda & Mohenti [1971], Gupta & Goyal [1971], Debnath [1973], Acheson [1973], Debnath & Mukherjee [1973], Reismann [1975], Seth & Maiti [1982], Surmadevi et. al. [1988], Pillai et. al. [1989], Singh & Kumar [1989] and Singh et. al. [2001] have studied problems on flow in rotating system under different physical situations and boundary conditions. More recently, Singh et. al. [2002] have studied unsteady oscillatory flow of an incompressible, electrically conducting, viscous liquid, through a porous medium past an infinite vertical porous plate with constant suction and transverse uniform magnetic field. In this study the suction velocity and the permeability of the medium is assumed constant. In the proposed study the investigation of Singh et. al. [2002] is extended to observe the heat and mass transfer effects on the unsteady MHD free convection flow of an incompressible, homogeneous, electrically conducting, viscous fluid through a porous medium with time dependent permeability, time dependent suction velocity and thermal diffusion under the influence of uniform magnetic field.

2. FORMULATION OF THE PROBLEM.

Consider unsteady free convection flow of an electrically conducting, homogeneous, incompressible, viscous liquid through a porous medium past an infinite porous vertical plate in the presence of uniform magnetic field. Under cartesian coordinate system \((x, y, z)\), the plate is considered in \(z\)-plane and the liquid and the plate both are in a state of rigid body rotation with uniform angular velocity \(\Omega\) about \(z\)-axis. The \(x\)-axis and \(y\)-axis are assumed in the plane of the vertical
porous plate so that z-axis is normal to these axes at the point of intersection and the components of velocity in these directions are u, v, w respectively. In addition the suction velocity at the porous plate is considered $w = -w_0(1 + e^{int})$ and the porous medium $k(t) = k_0(1 + e^{int})$ where w_0, n are real and positive. Initially, when $t \leq 0$ the plate and the fluid are assumed to be at the same temperature T_∞ and the foreign mass is assumed to be at low level and uniformly distributed in the flow region such that it is everywhere C_∞. When, $t > 0$, the temperature of the plate and the species concentration is raised to as shown in boundary conditions and thereafter maintained constant. In addition, the analysis is based on the following assumptions:

(i) The uniform magnetic field $B_0 = \mu_o H$ so that $\vec{H} = (0, 0, H_0)$ acts in the z-direction, i.e., normal to the flow of fluid.

(ii) The magnetic Reynolds number is very small so that induced magnetic field is negligible in comparison to applied magnetic field.

(iii) No external electric field is applied in the flow region so that the effect of polarization of ionized fluid is negligible.

(iv) The Hall effect and viscous dissipation effect have been ignored while electromagnetic body force (Lorentz force) is considered.

(v) An observation type heat source $Q = Q_0(T - T_\infty)$ and usual Boussinesq's approximation is taken into account.

Under the above stated assumptions, the governing equations of momentum, energy and diffusion are:

\[
\frac{\partial u}{\partial t} - (1 + e^{int}) \frac{\partial u}{\partial z} - 2Ev = G_cT + G_mC + \frac{\partial^2 u}{\partial z^2} - \left[M^2 + \frac{1}{k_0(1 + e^{int})} \right] u \quad \ldots(1)
\]

\[
\frac{\partial v}{\partial t} - (1 + e^{int}) \frac{\partial v}{\partial z} + 2Eu = \frac{\partial^2 v}{\partial z^2} - \left[M^2 + \frac{1}{k_0(1 + e^{int})} \right] v \quad \ldots(2)
\]

\[
P_r \frac{\partial T}{\partial t} - P_r(1 + e^{int}) \frac{\partial T}{\partial z} = \frac{\partial^2 T}{\partial z^2} - \alpha_0 T \quad \ldots(3)
\]

\[
S_c \frac{\partial C}{\partial t} - S_c(1 + e^{int}) \frac{\partial C}{\partial z} = \frac{\partial^2 C}{\partial z^2} + S_vS_0 \frac{\partial^2 T}{\partial z^2} \quad \ldots(4)
\]
The boundary conditions relevant to the problem are:

\[W = 0, \quad T = 1 + e^{int}, \quad C = 1 + e^{int} \quad \text{at} \quad z = 0 \]

\[W \to 0, \quad T \to 0, \quad C \to 0 \quad \text{as} \quad z \to \infty \quad \text{...(5)} \]

The non-dimensional quantities introduced to obtain the above equations are:

\[\ Nu^* = \frac{u}{U_0}, \quad \Nu^* = \frac{v}{U_0}, \quad \z^* = \frac{w_0 z}{U}, \quad \i^* = \frac{w_0^2 t}{U}, \quad \K^* = \frac{w_0^2 K}{U^2}, \]

\[\kappa^* = \frac{w_0^2 k_0}{U^2}, \quad \Nu = \left(\frac{u}{U_0} + i \frac{v}{U_0} \right), \quad \n^* = \frac{\nu n}{w_0^2}, \quad \T^* = \frac{T - T_\infty}{T_w - T_\infty} \]

\[\Pr = \frac{\mu C_p}{K} \quad \text{(Prandtl number),} \]

\[\Gr = \frac{\nu \beta^* (T_w - T_\infty)}{w_0^2 U_0} \quad \text{(Grashof number),} \]

\[\Sc = \frac{\nu D}{(C_w - C_\infty)} \quad \text{(Soret number),} \]

\[\Gm = \frac{\nu \beta^* (C_w - C_\infty)}{w_0^2 U_0} \quad \text{(Modified Grashof number),} \]

\[E = \frac{\nu \Omega}{w_0^2} \quad \text{(Rotation parameter),} \]

\[M = \frac{\mu \epsilon H_0}{w_0} \sqrt{\frac{\sigma \nu}{\rho}} \quad \text{(Hartmann number)} \]

and \[\alpha_0 = \frac{\nu^2 Q_0}{K w_0^2} \quad \text{(Heat source parameter)} \]

where \(\nu \) is the kinematic coefficient of viscosity, \(\beta^* \) is the volumetric coefficient of thermal expansion, \(\beta \) is the volumetric coefficient of thermal expansion with concentration, \(\sigma \) is the electrical conductivity of the liquid, \(\rho \) is the density of the liquid, \(\mu_e \) is the magnetic permeability, \(H_0 \) is the uniform magnetic field, \(k_0 \) is the constant permeability of the porous medium, \(K \) is the thermal conductivity, \(C_P \) is the specific heat at constant pressure, \(T \) is the temperature, \(T_w \) is the plate
temperature, \(C_w \) is the concentration at the plate, \(C_\infty \) is the concentration of species far away from the plate, \(T_\infty \) is the temperature far away from the plate, \(D \) is the thermal diffusivity and other symbols have their usual meaning.

Combining (2.1) and (2.2) and using \(u + iv = W \), we obtain:

\[
\frac{\partial W}{\partial t} - (1 + e^{int}) \frac{\partial W}{\partial z} + 2iE \frac{\partial W}{\partial z} + \left(M^2 + \frac{1}{k_0(1 + e^{int})} \right) \frac{W}{\partial z} = \frac{\partial^2 W}{\partial z^2} + G_r T + G_m C \quad \text{(6)}
\]

3. SOLUTION OF THE PROBLEM

We assume the velocity, temperature and concentration of the liquid in the neighbourhood of the plate as:

\[
W(z, t) = W_1(z) + e W_2(z) e^{int} \quad \text{(7)}
\]
\[
T(z, t) = T_1(z) + e T_2(z) e^{int} \quad \text{(8)}
\]
\[
C(z, t) = C_1(z) + e C_2(z) e^{int} \quad \text{(9)}
\]

Using (7), (8) and (9) in (3), (4) and (6), we obtain:

\[
T_1''(z) + P_r T_1'(z) - \alpha_0 T_1(z) = 0 \quad \text{(10)}
\]
\[
T_2''(z) + P_r T_2'(z) - (iP_r + \alpha_0) T_2(z) = -P_r T_1'(z) \quad \text{(11)}
\]
\[
C_1''(z) + S_c C_1'(z) = -S_c S_0 T_1''(z) \quad \text{(12)}
\]
\[
C_2''(z) + S_c C_2'(z) - iP_c C_2(z) = -S_c C_1'(z) - S_c S_0 T_2''(z) \quad \text{(13)}
\]
\[
W_1''(z) + W_1'(z) - (M_1 + 2iE) W_1(z) = -G_r T_1(z) - G_m C_1(z) \quad \text{(14)}
\]
\[
W_2''(z) + W_2'(z) - [M_1 + i(2E + n)] W_2(z) = -G_r T_2(z) \quad \text{(15)}
\]

where

\[
M_1 = M^2 + \frac{1}{k_0}
\]

Using (7), (8) and (9) in (5), the boundary conditions become:
\[W_1 = 0, W_2 = 0, T_1 = 1, T_2 = 1, \quad C_1 = 1, C_2 = 1 \quad \text{at} \quad z = 0 \]

\[W_1 = 0, W_2 = 0, \quad T_1 = 0, T_2 = 0, \quad C_1 = 0, C_2 = 0 \quad \text{as} \quad z \to \infty \quad \ldots (16) \]

The solutions of the coupled equations (10)-(15) under the boundary conditions (16) are:

\[
T_1(z) = e^{-H_1 z} \quad \ldots (17)
\]

\[
T_2(z) = (1 - F_1) e^{-H_2 z} + F_1 e^{-H_1 z} \quad \ldots (18)
\]

\[
C_1(z) = (1 + F_0) e^{-S_{c} z} - F_0 e^{-H_1 z} \quad \ldots (19)
\]

\[
C_2(z) = F_2 e^{-S_{c} z} - F_3 e^{-H_2 z} + F_4 e^{-H_1 z} + F_5 e^{-H_3 z} \quad \ldots (20)
\]

\[
W_1(z) = F_8 e^{-H_4 z} - F_7 e^{-S_{c} z} - F_6 e^{-H_1 z} \quad \ldots (21)
\]

\[
W_2(z) = F_{14} e^{-H_5 z} + F_9 e^{-H_1 z} + F_{10} e^{-H_2 z} - F_{11} e^{-H_3 z} + F_{12} e^{-H_4 z} - F_{13} e^{-S_{c} z} \quad \ldots (22)
\]

From (21), the steady parts of the primary velocity \(u_1(z) \) and secondary velocity \(v_1(z) \) are:

\[
u_1(z) = e^{-P_3 z} (A_9 \cos Q_3 z + B_9 \sin Q_3 z) - A_8 e^{-S_{c} z} - A_7 e^{-H_1 z} \quad \ldots (23)
\]

\[
v_1(z) = e^{-P_3 z} (B_9 \cos Q_3 z - A_9 \sin Q_3 z) - B_8 e^{-S_{c} z} - B_7 e^{-H_1 z} \quad \ldots (24)
\]

From (22), the time dependent parts of the primary velocity \(u_2(z) \) and the secondary velocity \(v_2(z) \) are:

\[
u_2(z) = e^{-P_4 z} (A_{14} \cos Q_4 z + B_{14} \sin Q_4 z) + e^{-P_3 z} (A_{12} \cos Q_3 z + B_{12} \sin Q_3 z)
- e^{-P_2 z} (A_{11} \cos Q_3 z + B_{11} \sin Q_2 z) + e^{-P_1 z} (A_{10} \cos Q_1 z + B_{10} \sin Q_1 z)
+ A_9 e^{-H_1 z} - A_{13} e^{-S_{c} z} \quad \ldots (25)
\]

\[
v_2(z) = e^{-P_4 z} (B_{14} \cos Q_4 z - A_{14} \sin Q_4 z) + e^{-P_3 z} (B_{12} \cos Q_3 z - A_{12} \sin Q_3 z)
- e^{-P_2 z} (B_{11} \cos Q_3 z - A_{11} \sin Q_2 z) + e^{-P_1 z} (B_{10} \cos Q_1 z - A_{10} \sin Q_1 z)
+ B_9 e^{-H_1 z} - B_{13} e^{-S_{c} z} \quad \ldots (26)
\]
Therefore the primary velocity \(u(z,t) \) and secondary velocity \(v(z,t) \) are:

\[
u(z,t) = u_1(z) + e^{-i\omega t} (u_2(z)\cos nt - v_2(z)\sin nt) \quad \ldots (27)
\]

\[
v(z,t) = v_1(z) + e^{-i\omega t} (v_2(z)\cos nt + u_2(z)\sin nt) \quad \ldots (28)
\]

4. Skin-friction, Rate of Heat and Mass Transfer

The non-dimensional skin-friction \(\tau \) at the plate at \(z = 0 \) is:

\[
\tau = \left(\frac{dW}{dz} \right)_{z=0} = \left(\frac{dW_1}{dz} \right)_{z=0} + \epsilon e^{int} \left(\frac{dW_2}{dz} \right)_{z=0} = \tau_p + i\tau_s \quad \ldots (29)
\]

Using (29) primary skin-friction \(\tau_p \) due to primary velocity and secondary skin-friction \(\tau_s \) due to secondary velocity are:

\[
\tau_p = \tau_{0p} + \epsilon (A_{15}\cos nt - B_{15}\sin nt) \quad \ldots (30)
\]

\[
\tau_s = \tau_{0s} + \epsilon (B_{15}\cos nt + A_{15}\sin nt) \quad \ldots (31)
\]

Also, the rate of heat transfer \(N_u \) and the rate of mass transfer \(S_h \) at the plate at \(z = 0 \) are:

\[
N_u = \left(\frac{dT}{dz} \right)_{z=0} = \left(\frac{dT_1}{dz} \right)_{z=0} + \epsilon e^{int} \left(\frac{dT_2}{dz} \right)_{z=0} \quad \ldots (32)
\]

\[
S_h = \left(\frac{dC}{dz} \right)_{z=0} = \left(\frac{dC_1}{dz} \right)_{z=0} + \epsilon e^{int} \left(\frac{dC_2}{dz} \right)_{z=0} \quad \ldots (33)
\]

Hence, considering that the real part only is of significance, we get:

\[
N_u = -H_1 + \epsilon |A_{16}\cos nt - B_{16}\sin nt| \quad \ldots (34)
\]

\[
S_h = H_1F_0 - S_c(1 + F_0) + \epsilon |A_{17}\cos nt - B_{17}\sin nt| \quad \ldots (35)
\]

In terms of amplitude and phase we write:

\[
N_u = -H_1 + \epsilon |L_1|\cos(nt + \alpha) \quad \ldots (36)
\]

\[
S_h = H_1F_0 - S_c(1 + F_0) + \epsilon |L_2|\cos(nt + \beta) \quad \ldots (37)
\]
TABLE-1
SKIN-FRICTION DUE TO PRIMARY AND SECONDARY VELOCITY
(\(P_r = 0.71\), \(k_0 = 10.0\), \(\alpha_0 = 1.0\), \(n = 5.0\), \(G_m = 10.0\), \(t = 1.0\) and \(\varepsilon = 0.002\))

<table>
<thead>
<tr>
<th>Sc</th>
<th>M</th>
<th>Gr</th>
<th>So</th>
<th>E</th>
<th>(\tau_p)</th>
<th>(\tau_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.22</td>
<td>1.0</td>
<td>10.0</td>
<td>1.0</td>
<td>1.0</td>
<td>10.30405</td>
<td>-5.49032</td>
</tr>
<tr>
<td>0.78</td>
<td>1.0</td>
<td>10.0</td>
<td>1.0</td>
<td>1.0</td>
<td>9.035954</td>
<td>-3.49691</td>
</tr>
<tr>
<td>0.22</td>
<td>1.5</td>
<td>10.0</td>
<td>1.0</td>
<td>1.0</td>
<td>9.607512</td>
<td>-3.23245</td>
</tr>
<tr>
<td>0.22</td>
<td>1.0</td>
<td>20.0</td>
<td>1.0</td>
<td>1.0</td>
<td>14.27663</td>
<td>-6.73981</td>
</tr>
<tr>
<td>0.22</td>
<td>1.0</td>
<td>10.0</td>
<td>2.0</td>
<td>1.0</td>
<td>10.11975</td>
<td>-5.63872</td>
</tr>
<tr>
<td>0.22</td>
<td>1.0</td>
<td>10.0</td>
<td>1.0</td>
<td>2.0</td>
<td>7.311972</td>
<td>-5.03227</td>
</tr>
</tbody>
</table>

TABLE-2
AMPLITUDE \(|K_1|\), PHASE \(\tan \alpha\) AND RATE OF HEAT TRANSFER \(N_{\text{ut}}\)
(\(n = 5.0\), \(t = 1.0\) and \(\varepsilon = 0.002\))

| S. No. | \(P_r\) | \(\alpha_0\) | \(|K_1|\) | \(\tan \alpha\) | \(N_{\text{ut}}\) |
|--------|---------|------------|----------|--------------|--------------|
| 1 | 0.71 | 1.0 | 1.6957 | 0.4207 | 0.6879 |
| 2 | 0.025 | 1.0 | 0.2138 | 0.4714 | 0.0214 |
| 3 | 7.00 | 1.0 | 11.5739 | 0.0286 | 5.9864 |
| 4 | 11.4 | 1.0 | 20.2873 | 0.0095 | 9.8197 |
| 5 | 0.71 | 2.0 | 1.9871 | 0.4998 | 0.6792 |

TABLE-3
AMPLITUDE \(|K_2|\), PHASE \(\tan \beta\) AND RATE OF MASS TRANSFER \(S_h\)
(\(n = 5.0\), \(t = 1.0\) and \(\varepsilon = 0.002\))

| S. No. | Sc | S0 | \(|K_2|\) | \(\tan \beta\) | \(S_h\) |
|--------|-----|-----|----------|--------------|--------|
| 1 | 0.22| 1.0 | 0.8271 | 0.7014 | 0.1987 |
| 2 | 0.30| 1.0 | 1.0092 | 0.6813 | 0.2632 |
| 3 | 0.60| 1.0 | 1.5482 | 0.6192 | 0.5389 |
| 4 | 0.66| 1.0 | 1.6412 | 0.6138 | 0.6218 |
| 5 | 0.78| 1.0 | 1.9173 | 0.6085 | 0.7485 |
| 6 | 0.22| 2.0 | 0.9915 | 0.7754 | 0.1991 |
5. DISCUSSION AND CONCLUSIONS

The effects of Schmidt number (S_c), magnetic parameter (M), Grashof number (G_r), Soret number (S_0) and rotation parameter (E) on primary velocity (u) and secondary velocity (v) at $P_r = 0.71$, $k_0 = 10.0$, $n = 5.0$, $\alpha_0 = 1.0$, $t = 1.0$, $G_m = 10.0$ and $\varepsilon = 0.002$ are numerically observed and are shown in Fig.-1 and Fig.-2. The above stated effects on skin-friction (τ_p) due to primary velocity and skin-friction (τ_s) due to secondary velocity at the plate are observed numerically and are represented in Table-1. To be realistic the values of Prandtl number (P_r) are chosen for mercury ($P_r = 0.025$), air ($P_r = 0.71$), water ($P_r = 7.0$) and water at $4^\circ C$ ($P_r = 11.4$). The values of Schmidt number (S_c) are chosen for Hydrogen ($S_c = 0.22$), Helium ($S_c = 0.30$), Water-vapour ($S_c = 0.60$), Oxygen ($S_c = 0.66$) and Ammonia ($S_c = 0.78$). The values of the remaining parameters are chosen arbitrarily. The conclusions of the study are as follows:

(i) An increase in G_r or S_0 increases primary velocity while an increase in S_c, M or E decreases the primary velocity.

(ii) An increase in G_r and M both decreases the primary velocity.

(iii) An increase in S_0 and E both decreases the primary velocity.

(iv) The primary velocity increases near the plate and after attaining a maximum value it decreases as z increases.

(v) An increase in S_c, M or E increases secondary velocity while an increase in G_r or S_0 decreases the secondary velocity.

(vi) An increase in G_r and M both, the secondary velocity increases.

(vii) An increase in G_m and E both, the secondary velocity increases.

(viii) The secondary velocity decreases near the plate and after attaining a minimum value it increases as z increases.

(ix) An increase in S_c, M, S_0 or E decreases the skin-friction due to primary
velocity while an increase in G_r increases the skin-friction due to primary velocity.

(x) An increase in S_c, M or E increases the skin-friction due to secondary velocity while an increase in G_r or S_0 decreases the skin-friction due to secondary velocity.

(xi) The values of $|K_1|$ and N_u are least for mercury and highest for water at 4°C while reverse effects are noted for $\tan \alpha$.

(xii) An increase in α_0 results in an increase in amplitude $|K_1|$ and phase $\tan \alpha$ but decreases the rate of heat transfer N_u.

(xiii) The values of $|K_2|$ and S_h increase due to the increase in S_c corresponding to the said gases while reverse effect is noted for the phase $\tan \beta$.

(xiv) An increase in S_0 results in an increase in amplitude $|K_2|$ and phase $\tan \beta$ but decreases the rate of mass transfer S_h.

APPENDIX

$$H_1 = \frac{P_r + \sqrt{P_r^2 + 4\alpha_0}}{2},$$
$$H_2 = P_1 + iQ_1 = \frac{P_r + \sqrt{P_r^2 + 4(iP_r + \alpha_0)}}{2},$$
$$H_3 = P_2 + iQ_2 = \frac{S_c + \sqrt{S_c^2 + 4iSnS_c}}{2},$$
$$H_4 = P_3 + iQ_3 = \frac{1+\sqrt{1 + 4M_1 + 8iE}}{2},$$
$$H_5 = P_4 + iQ_4 = \frac{1+\sqrt{1 + 4M_1 + 4i(2E + n)}}{2},$$
$$F_0 = \frac{S_cS_0H_1^2}{H_1(H_1 - S_c)},$$
$$F_1 = (A_1 + iB_1) = \frac{H_1P_r}{(H_1^2 - H_1P_r - \alpha_0) - i(nP_r)},$$
$$F_2 = A_2 + iB_2 = \frac{iS_c}{n},$$
$$F_3 = A_3 + iB_3 = \frac{S_0S_cH_2^2(1 - F_1)}{H_2^2 - H_2S_c - inS_c},$$
$$F_4 = A_4 + iB_4 = \frac{S_0S_cF_1H_1^2}{H_1^2 - H_1S_c - inS_c},$$
$$F_5 = A_5 + iB_5 = 1 - F_2 + F_3 - F_4,$$
$$F_6 = A_6 + iB_6 = \frac{G_r + G_mF_0}{H_1^2 - H_1 - M_1 - i2E}.$$
\[F_7 = A_7 + iB_7 = \frac{G_m(1 + F_0)}{S_c^2 - S_c - M_1 - i2E} \]

\[F_8 = A_8 + iB_8 = F_6 + F_7 \]

\[F_9 = A_9 + iB_9 = \frac{F_6(1 - k_0H_1) - k_0G_rF_1 - G_mF_4k_0}{k_0[H_1^2 - H_1 - M_1 - i(2E + n)]} \]

\[F_{10} = A_{10} + iB_{10} = \frac{G_mF_3 - G_r(1 - F_1)}{(H_2^2 - H_2 - M_1 - i(2E + n))} \]

\[F_{11} = A_{11} + iB_{11} = \frac{G_mF_5}{H_3^2 - H_3 - M_1 - i(2E + n)} \]

\[F_{12} = A_{12} + iB_{12} = \frac{F_9(k_0H_4 - 1)}{k_0[H_4^2 - H_4 - M_1 - i(2E + n)]} \]

\[F_{13} = A_{13} + iB_{13} = \frac{k_0G_mF_2 + F_7(k_0S_c - 1)}{k_0[S_c^2 - S_c - M_1 - i(2E + n)]} \]

\[F_{14} = A_{14} + iB_{14} = -F_9 - F_{10} + F_{11} - F_{12} + F_{13} \]

\[P_1 = \frac{P_r}{2} + \frac{1}{2\sqrt{2}} \left[\sqrt{(P_r^2 + 4\alpha_0)^2 + 16n^2P_r^2 + (P_r^2 + 4\alpha_0)} \right]^{1/2} \]

\[Q_1 = \frac{1}{2\sqrt{2}} \left[\sqrt{(P_r^2 + 4\alpha_0)^2 + 16n^2P_r^2 - (P_r^2 + 4\alpha_0)} \right]^{1/2} \]

\[P_2 = \frac{S_c}{2} + \frac{1}{2\sqrt{2}} \left[S_c\sqrt{S_c^2 + 16n^2 + S_c^2} \right]^{1/2} \]

\[Q_2 = \frac{1}{2\sqrt{2}} \left[S_c\sqrt{S_c^2 + 16n^2 - S_c^2} \right]^{1/2} \]

\[P_3 = \frac{1}{2} + \frac{1}{2\sqrt{2}} \left[\sqrt{(1 + 4M_1)^2 + 64E^2 + (1 + 4M_1)} \right]^{1/2} \]

\[Q_3 = \frac{1}{2\sqrt{2}} \left[\sqrt{(1 + 4M_1)^2 + 64E^2 - (1 + 4M_1)} \right]^{1/2} \]
\[P_4 = \frac{1}{2} + \frac{1}{2\sqrt{2}} \left[\sqrt{(1 + 4 M_1)^2 + 16(2E + n)^2} + (1 + 4 M_1) \right]^{1/2}, \]

\[Q_4 = \frac{1}{2\sqrt{2}} \left[\sqrt{(1 + 4 M_1)^2 + 16(2E + n)^2} - (1 + 4 M_1) \right]^{1/2}, \]

\[A_1 = \frac{H_1 P_r a_1}{a_1^2 + b_1^2}, \quad B_1 = \frac{H_1 P_r b_1}{a_1^2 + b_1^2}, \quad A_2 = 0, \quad B_2 = \frac{S_c}{n}, \]

\[A_3 = \frac{a_2 a_3 + b_2 b_3}{a_3^2 + b_3^2}, \quad B_3 = \frac{b_2 a_3 - a_2 b_3}{a_3^2 + b_3^2}, \]

\[A_4 = \frac{S_c S_0 H_1^2 [A_1 a_4 - B_1 b_4]}{a_4^2 + b_4^2}, \quad B_4 = \frac{S_c S_0 H_1^2 [A_1 b_4 + B_1 a_4]}{a_4^2 + b_4^2}, \]

\[A_5 = 1 - A_2 + A_3 - A_4, \quad B_5 = B_1 - B_2 - B_4, \]

\[A_6 = \frac{G_r + F_0 G_m}{a_5^2 + b_5^2}, \quad B_6 = \frac{G_r + F_0 G_m}{a_5^2 + b_5^2}, \]

\[A_7 = \frac{a_6 G_m (1 + F_0)}{a_6^2 + b_6^2}, \quad B_7 = \frac{b_6 G_m (1 + F_0)}{a_6^2 + b_6^2}, \]

\[A_8 = A_6 + A_7, \quad B_8 = B_6 + B_7, \]

\[A_9 = \frac{a_7 a_8 - b_7 b_8}{a_8^2 + b_8^2}, \quad B_9 = \frac{b_7 a_8 + a_7 b_8}{a_8^2 + b_8^2}, \]

\[A_{10} = \frac{a_9 a_{10} + b_9 b_{10}}{a_{10}^2 + b_{10}^2}, \quad B_{10} = \frac{b_9 a_{10} - a_9 b_{10}}{a_{10}^2 + b_{10}^2}, \]

\[A_{11} = \frac{G_r (A_5 a_{11} + B_5 b_{11})}{a_{11}^2 + b_{11}^2}, \quad B_{11} = \frac{G_r (B_5 a_{11} - A_5 b_{11})}{a_{11}^2 + b_{11}^2}, \]

\[A_{12} = \frac{a_{12} a_{13} + b_{12} b_{13}}{a_{13}^2 + b_{13}^2}, \quad B_{12} = \frac{b_{12} a_{13} - a_{12} b_{13}}{a_{13}^2 + b_{13}^2}, \]

\[A_{13} = \frac{a_{14} a_{15} + b_{14} b_{15}}{a_{15}^2 + b_{15}^2}, \quad B_{13} = \frac{b_{14} a_{15} - a_{14} b_{15}}{a_{15}^2 + b_{15}^2}, \]

\[A_{14} = A_{13} - A_{12} + A_{11} - A_{10} - A_9, \quad B_{14} = B_{13} - B_{12} + B_{11} - B_{10} - B_9, \]
\[a_1 = H_1^2 - H_1P_r - \alpha_0, \]
\[a_2 = S_0S_c\left(1 - A_1\right)\left(P_1^2 - Q_1^2\right) + 2P_1Q_1B_1, \]
\[a_3 = P_1^2 - Q_1^2 - P_1S_c, \]
\[a_4 = H_1\left(H_1 - S_c\right), \]
\[a_5 = H_1^2 - H_1 - M_1, \]
\[a_6 = S_c^2 - S_c - M_1, \]
\[a_7 = A_6\left(1 - k_0H_1\right) - k_0A_1Gr - k_0F_0G_m, \]
\[a_8 = k_0a_5, \]
\[a_9 = G_mA_3 - Gr\left(1 - A_1\right), \]
\[a_{10} = P_1^2 - Q_1^2 - P_1 - M_1, \]
\[a_{11} = P_2^2 - Q_2^2 - P_2 - M_1, \]
\[a_{12} = A_8\left(k_0P_3 - 1\right) - B_8k_0Q_3, \]
\[a_{13} = k_0\left[P_3^2 - Q_3^2 - P_3 - M_1\right], \]
\[a_{14} = A_2k_0G_m + A_7\left(k_0S_c - 1\right), \]
\[a_{15} = k_0\left[S_c^2 - S_c - M_1\right], \]
\[b_1 = nP_r, \]
\[b_2 = S_cS_0\left[2P_1Q_1\left(1 - A_1\right) - B_1\left(P_1^2 - Q_1^2\right)\right], \]
\[b_3 = 2P_1Q_1 - Q_1 - nS_c, \]
\[b_4 = nS_c, \]
\[b_5 = b_6 = 2E, \]
\[b_7 = B_6\left(1 - k_0H_1\right) - B_1k_0Gr, \]
\[b_8 = b_{15} = k_0\left(2E + n\right), \]
\[b_9 = G_mB_3 + GrB_1, \]
\[b_{10} = 2P_1Q_1 - Q_1 - 2E - n, \]
\[b_{11} = 2P_2Q_2 - Q_2 - 2E - n, \]
\[b_{12} = B_8\left(P_3k_0 - 1\right) + A_8Q_3k_0, \]
\[b_{13} = k_0\left[2P_3Q_3 - Q_3 - 2E - n\right], \]
\[b_{14} = B_2k_0G_m + B_7\left(k_0S_c - 1\right), \]
\[\tau_{0.6} = A_7H_1 + A_8S_c + Q_3B_9 - P_3A_9, \]
\[\tau_{0.5} = B_7H_1 + B_8S_c - Q_3A_9 - P_3B_9, \]
\[A_{15} = A_{13}S_c - A_{14}P_4 + B_{14}Q_4 - A_{12}P_3 + B_{12}Q_3 - A_{11}P_2 + B_{12}Q_2 - A_{10}P_1 + B_{10}Q_1 - A_9H_1 \]
\[B_{16} = P_1\left(A_1 - 1\right) - Q_1B_1 - H_1A_1, \]
\[B_{15} = B_{13}S_c - A_{14}Q_4 - B_{14}P_4 - A_{12}Q_3 - B_{12}P_2 - A_{11}Q_2 - B_{12}P_2 - A_{10}Q_1 - B_{10}P_1 - B_9H_1 \]
\[A_{16} = P_1\left(A_1 - 1\right) + P_1B_1 - H_1B_1, \]
\[A_{17} = A_3P_1 - B_3Q_1 - A_5P_2 + B_5Q_2 - A_2S_c - A_4H_1, \]
\[B_{16} = Q_1\left(A_1 - 1\right) + P_1B_1 - H_1B_1, \]
\[B_{17} = A_3Q_1 + B_3P_1 - A_5Q_2 - B_5P_2 - B_2S_c - B_4H_1 \]

\[|L_1| = |A_{16} + iB_{16}|, \quad |L_2| = |A_{17} + iB_{17}|, \quad \tan \alpha = \frac{B_{16}}{A_{16}} \quad \text{and} \quad \tan \beta = \frac{B_{17}}{A_{17}} \]
Figure 1. Effects of Various Parameters on Primary Velocity

![Graph showing effects of various parameters on primary velocity.](image)

Figure 2. Effects of Various Parameters on Secondary Velocity

![Graph showing effects of various parameters on secondary velocity.](image)