TABLE OF CONTENTS

CHAPTER NO		TITLE	PAGE NO.	
	ABS	TRACT	iii	
	LIST	T OF TABLES	xi	
	LIST	T OF FIGURES	xii	
	LIST	T OF SYMBOLS AND ABBREVIATIONS	XV	
1	INTRODUCTION			
	1.1	GENERAL	1	
	1.2	PROBLEM STATEMENT	2	
	1.3	SIGNIFICANCE OF THE RESEARCH	5	
	1.4	APPROACH OF THE RESEARCH	7	
	1.5	AIM AND SCOPE – OF THE PRESENT		
		WORK	9	
	1.6	OUTLINE OF THE THESIS	10	
2	LITI	ERATURE REVIEW	11	
	2.1	GENERAL	11	
	2.2	CRYOGENIC TREATMENT	11	
	2.3	WEAR BEHAVIOUR AND HARDNESS	15	
	2.4	MECHANISM OF CRYOGENIC TREATME	NT 19	
		2.4.1 Transformation of Retained Austenite	20	
		2.4.2 Precipitation of Carbides	22	
	2.5	TENSILE AND FATIGUE BEHAVIOUR	24	
	2.6	RESIDUAL STRESS	25	

CHAPTER NO.		TITLE	PAGE NO
	2.7	TOUGHNESS	28
	2.8	CORROSION RESISTANCE	30
	2.9	DAMPING CAPACITY	30
	2.10	OPTIMIZATION OF CRYOGENIC	
		TREATMENT	31
3	MAT	ERIAL AND TREATMENT PROCEDU	RE 35
	3.1	SELECTION OF MATERIAL	35
	3.2	RESEARCH METHODOLOGY	36
	3.3	CONVENTIONAL HEAT TREATMENT	37
		3.3.1 Tempering Process	38
	3.4	CRYOGENIC TREATMENT	39
4	EXP	ERIMENTAL INVESTIGATION	43
	4.1	CHEMICAL COMPOSITION ANALYSI	S 43
	4.2	HARDNESS TEST	43
	4.3	SLIDING WEAR TEST	44
		4.3.1 Wear Test Parameters at Lower L	oads
		(10N, 20N, 30N)	46
		4.3.2 Wear Test Parameters at Higher L	oads
		(60N, 70N, 80N)	46
	4.4	IMPACT TEST	46
	4.5	TENSION TEST	48
		4.5.1 Tensile Strength	48
		4.5.2 Percentage Elongation	49
		4.5.3 Fractography	50
	4.6	X-RAY DETERMINATION OF RETAIN	ED
		AUSTENITE	51

CHAPTER NO.		TITLE			PAGE NO	
4.7		RESIDUAL STATE OF STRESS				
		MEAS	UREME	NT BY X-RAY DIFFRACT	ION	
		TECHN	NIQUE		52	
	4.8	CORRO	OSION T	EST	56	
	4.9	DAMP	ING TES	ST	58	
	4.10	MICRO	OSTRUC	TURAL ANALYSIS	60	
	4.11	OPTIM	IIZATIO:	N OF DEEP CRYOGENIC		
		AND H	IEAT TR	EATMENT	61	
		4.11.1	Plannin	g for Experimentation	62	
		4.11.2	Taguch	i Method	63	
5	RESU	ULTS A	ND DISC	CUSSION	66	
	5.1	HARD	NESS TE	EST	66	
	5.2	TRIBO	LOGICA	AL BEHAVIOUR	67	
		5.2.1	Wear T	ests at Lower loads	68	
		5.2.2	Wear T	ests at Higher loads	71	
			5.2.2.1	Enhancement in Wear		
				Resistance with Varying Lo	oads	
				at Constant Speed	72	
			5.2.2.2	Enhancement in Wear		
				Resistance with Varying Sp	oeed	
				at Constant Load	74	
	5.3	IMPAC	CT ENER	GY	74	
	5.4	TENSILE BEHAVIOUR			75	
		5.4.1	Tensile	Strength and Percent Elonga	ation 76	
		5.4.2	Fractog	raphy	77	
	5.5	TRANSFORMATION OF RETAINED				
		AUSTI	ENITE		80	

CHAPTER NO.		TITLE	PAGE NO.	
	5.6	RESIDUAL STATE OF STRESS	82	
	5.7	CORROSION BEHAVIOUR	89	
		5.7.1 Corrosion Performance of En 19 Stee	el	
		in Na2CO3 Solution	89	
	5.8	DAMPING CAPACITY	90	
	5.9 MICROSTRUCTURAL ANALYSIS			
	OPTIMIZATION OF DEEP CRYOGENIC			
		AND HEAT TREATMENT PARAMETERS	95	
		5.10.1 Wear Loss	95	
	5.11	COMPARISON OF PROPERTY		
		IMPROVEMENT	101	
6	SUM	MARY AND CONCLUSIONS	103	
	6.1	SUMMARY	103	
	6.2	CONCLUSIONS	104	
	6.3	SCOPE FOR FUTURE RESEARCH WORK	108	
	APPI	110		
	APPI	112		
	APPI	113		
	APPI	114		
	APPI	115		
	APPI	116		
	REFI	117		
	LIST	128		
	CUR	130		

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO	
2.1	Field Trial of Wear Improvements in Deep Cryo		
	Treated Tools	16	
3.1	ASTM Standards Adopted for Various Test	42	
4.1	Chemical Composition of En 19 steel (wt %)	43	
4.2	Experimental Parameters for Dry Sliding Wear Tes	t 45	
4.3	Impact Test Groups	47	
4.4	Tensile Test Groups	50	
4.5	Properties and Parameters for Residual Stress		
	Measurements	56	
4.6	Wear Test Parameters for Optimization Study	65	
5.1	Hardness Test Results	66	
5.2	Charpy Impact Test Results	75	
5.3	Tensile Test Results	76	
5.4	Quality Inverse Factor	91	
5.5	Factor and Level Description for Taguchi		
	Design of Experiments	95	
5.6	Experimental Results and S/N ratio for		
	Taguchi DOE	96	
5.7	Comparison of Property Improvement	101	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO	
1.1	Vibrating Screen Equipment	3	
1.2	Screen Section Made of En 19 Steel	4	
1.3	Organization of the Thesis	10	
2.1	Improvement in Wear Rate due to Deep		
	Cryogenic Treatment	16	
2.2	Photograph of Failed Tie Bar Made of En 19 Steel	1 22	
3.1	Research Methodology	36	
3.2	Deep Cryogenic Treatment Cycle	40	
3.3	Experimental Procedure	41	
4.1	Wear Testing Machine	44	
4.2	Wear and Friction Monitor	44	
4.3	Charpy Impact Test Specimen	47	
4.4	Tensile Test Specimen	50	
4.5	X-ray Analyzer	53	
4.6	Directions of the Measurements Using X-ray		
	Diffraction (a) Longitudinal Direction		
	(b) Transverse Direction	55	
4.7	Photograph of Fast Fourier Transform Analyzer	59	
4.8	Schematic Diagram of Damping Test System	59	
5.1	Variations of Coefficient of Friction with Load of		
	10N, 20N and 30N	68	
5.2	Variations of Wear Resistance with Load of		
	10N, 20N and 30N	69	

FIGURE NO.	TITLE	PAGE NO.	
5.3	Variations of Wear Resistance with Load at		
	a Sliding Speed of 2.8 m/s	71	
5.4	Variations of Wear Resistance with Load at		
	a Sliding Speed of 3.2 m/s	72	
5.5	Variations of Wear Resistance with Load at		
	a Sliding Speed of 3.6 m/s	73	
5.6	SEM Fractograph of Group B CHT sample	78	
5.7	SEM Fractograph of Group C SCT sample	79	
5.8	SEM Fractograph of Group D DCT sample	79	
5.9	X-ray Diffraction Profiles for CHT sample	80	
5.10	X-ray Diffraction Profiles for SCT sample	81	
5.11	X-ray Diffraction Profiles for DCT sample	81	
5.12	Residual State of Macrostress Prior Tempering	82	
5.13	Residual State of Macrostress After Tempering	83	
5.14	Residual State of Microstress Prior Tempering	83	
5.15	Residual State of Microstress After Tempering	84	
5.16	Polarization Curves Recorded in 1M Na ₂ Co ₃		
	Solution at 10 mv/s for the Bulk of CHT, SCT		
	and DCT Samples	90	
5.17	Damping Percentage of CHT, SCT and DCT Samp	oles 91	
5.18	Microstructure of Untreated En 19 Steel at a		
	Magnification of 20000X	92	
5.19	Microstructure of a) CHT, b) SCT,		
	c) DCT at a Magnification of 20000X	93	

FIGURE NO.	TITLE	PAGE NO
5.20	Microstructure of a) CHT prior	
	tempering, b) CHTafter tempering,	
	c) SCT prior tempering, d) SCT after	
	tempering, e) DCT prior tempering	
	and f) DCT after tempering,	
	at 5000X Magnification	94
5.21	Plot of Response Data of S/N ratio for Main	
	Factors of Taguchi DOE for Wear Loss	97
5.22	Optimum Condition of Significant	
	Factor Level for Wear Loss	98

LIST OF SYMBOLS AND ABBREVIATIONS

AISI - American Iron and Steel Institute

ASM - American Society for Metals

ASTM - American Society for Testing and Materials

ANOVA - Analysis of Variance

k - Archard's wear coefficient

γ - Austenite

BCC - Body Centered Cubic

BCT - Body Centered Tetragonal

C - Carbon

Cl₂ - Chloride

Cr - Chromium

CHT - Conventional Heat Treatment

I_{Corr} - Corrosion Current

E_{Corr} - Corrosion Potential

DCT - Deep Cryogenic Treatment

 θ - Diffraction angle

En - Emergency Number

FCC - Face Centered Cubic

FFT - Fast Fourier Transform

f - Frequency

FWHM - Full Width Half Maximum

A - Hardening Temperature

Q⁻¹ - Inverse Quality Factor

d_{hkl} - Lattice Spacing

LVDT - Linear Variable Differential Transformer

V - Linear Velocity

Mn - Manganese

α - Martensite

M_f - Martensite finish temperature

MAUD - Material Analysis Using Diffraction

y_i - Measured Experimental Data

Mo - Molybdenum

F - Normal Load

OES - Optical Emission Spectroscope

n - Order of Diffraction

P - Phosphorous

Q - Quality Factor

HRC - Rockwell Hardness Number - C scale

SEM - Scanning Electron Microscope

SCT - Shallow Cryogenic treatment

S/N - Signal to Noise Ratio

Si - Silicon

Ag - Silver

B - Soaking Period

Na₂CO₃ - Sodium Carbonate

S - Sulphur

D - Tempering Period

C - Tempering Temperature

Hv - Vickers Hardness

Y - Wear Loss

WR - Wear Resistance

XRD - X-Ray Diffraction

 λ - X-ray wave length