List of figures

Chapter I:

Fig. 1.1 Evolution of SOFCs
Fig. 1.2. Status on publications (JACS, JPS, SSI on SOFC upto 2011)
Fig. 1.3 Schematic of SOFC in operation
Fig. 1.4 Schematic of two fuel cells stacked in series.
Fig. 1.5 SOFC components and materials along with the technologies, challenges and targets
Fig. 1.6 Phase diagram of ZrO2-Y2O3 system
Fig. 1.7 Conductivity of yttria- and scandia-stabilized zirconia in air at 1000°C
Fig. 1.8 Approaches to improve the ionic conductivity of 8YSZ

Chapter II:

Fig. 2.1 XRD Pattern of the sample
Fig. 2.2 Nanosizer used for analysis
Fig. 2.3 Particle size distribution curve
Fig. 2.4 BET plot of 8YSZ—Tosoh powder
Fig. 2.5 Torque vs. binder volume concentration, showing the region of Sub-CBVC, CBVC, Post-CBVC
Fig. 2.6(a) Particles with monolayer coating, (b) Liquid bridging and formation of clusters exhibiting the volume of binder liquid just sufficient to form a strong, adsorbed layer on the particles, and completely fill the inter-particulate void space, (c) Particles forming a single lump, (d) Particles forming slurry
Fig. 2.7 Plot of water addition Vs. Processing regime for zirconia raw mix
Fig. 2.8 Powder flow analyzer along with specified rotating blade
Fig. 2.9 Force—displacement curve
Fig. 2.10(a) Engineering drawing of the Compaction Die and (b) compaction die along with bottom and top punches
Fig. 2.11(a) Compaction Die Mounted on Universal Testing Machine (Instron Model 8812), (b) Compaction curves of granules and (c) 8YSZ green compacts
Fig. 2.12 Slip Casting Process (Schematic)
Fig. 2.13 Photo of Plaster of Paris mould

Fig. 2.14(a) Plots of Viscosity with shear rates for 8YSZ slurries of varying solid loadings

Fig. 2.14(b) Plots of Viscosity vs. % solid loading of 8YSZ slurries at various shear rates

Fig. 2.15 Effect of dispersant concentration on the viscosity of 65wt% solid content slurry at constant shear rate

Fig. 2.16 Drying curve obtained for the cast samples with 55, 60, and 65 of solid loading

Fig. 2.17 Dried samples of different solid loading

Fig. 2.18 Structure of methylcellulose, \(R = \text{CH}_3 \)

Fig. 2.19 Gelation of 2% aqueous solution of MC, having normal viscosity of 100mPa.s, when heated at 0.25°C/min; rate of shear 86s\(^{-1}\) [24].

Fig. 2.20 Effect of heating rate on gelation behavior of 0.2 wt% MC concentration

Fig. 2.21 Effect of methyl cellulose concentrations on gelation behavior (a) 0.08wt% MC, (b) 0.2wt% MC, and (c) 0.50wt% MC

Fig. 2.22 Effect of methyl cellulose concentration on gelation

Fig. 2.23 Progressive gelation process on exposure to microwave irradiation

Fig. 2.24 Temperature vs. complex viscosity of 8YSZ slurry with varying concentrations of MC

Fig. 2.25 Schematic drawing showing gelation though the hydrophobic effective units of methylcellulose chains [25]

Fig. 2.26 Schematic of the process flow chart of MC thermal gel casting

Fig. 2.27 Teflon Mould Designs

Fig. 2.28 Plot of temperature (upto 60°C) vs. cumulative exposure time of MWTG and CTG

Fig. 2.29 Dried 8YSZ samples cast through MWTG and CTG process (a) Simple and complex geometries (b) machined.

Fig. 2.30 Design of the mould along with mould fabricated out of Teflon

Fig. 2.31 Green 8YSZ Honeycomb electrolytes produced by methyl cellulose casting

Chapter III:

Fig. 3.1 Schematic of CRH sintering

Fig. 3.2 Schematic comparisons between CRH and RCS profiles of, (a) Temperature - Time and (b) Relative density - Time

Fig. 3.3 Schematic of TSS sintering profiles

Fig. 3.4 Electromagnetic spectrum and frequencies used in microwave processing.
Fig. 3.5 Schematic drawing illustrating the features of an SPS apparatus
Fig. 3.6(a) Dilatometer
Fig. 3.6(b) Schematic diagram of the dilatometer used for the measurements
Fig. 3.7 Linear shrinkage of the 8YSZ slip cast specimens during sintering at three different heating rates 5 (dashed line), 10 (dotted line) and (dot-dash line) 20 °C /min.
Fig. 3.8 Shrinkage vs. temperature plots of (a) entire dilatometer data (b) shrinkage region
Fig. 3.9 Plot of Relative density (%) vs. Temperature (°C) for different heating rates.
Fig. 3.10 Plot of MSC for different chosen activation energy values (a) 300 kJ/mol, (b) 400 kJ/mol and (c) 500 kJ/mol
Fig. 3.11 Mean residual square minimization curve for calculation of apparent activation energy
Fig. 3.12 Constructed MSC for the sintered 8YSZ sample using an activation energy of Q=400 kJ/mol.
Fig. 3.13 Densification rate as a function of temperature
Fig. 3.14 Temperature profiles employed to sinter 8YSZ pellet by CRH sintering method (a) 1500°C, (b) 1525°C, and (c) 1550°C
Fig. 3.15 Dependence of density, porosity on sintering temperature of 8YSZ specimens sintered by CRH sintering method
Fig. 3.16 Automatic Polishing Machine
Fig. 3.17(a) Ion Sputtering Device and (b) Scanning Electron Microscope
Fig. 3.18 Microstructures of 8YSZ samples of CRH sintered at (a) 1500°C, (b) 1525°C, and (c) 1550°C
Fig. 3.19(a) Image analyzer (b) Grain size measurement by Linear Intercept method
Fig. 3.20 SEM images of the CRH sample (representative) sintered at 1525°C (a) Grain Size analysis by Linear Intercept Method, (b) Grain size distribution
Fig. 3.21 Dependence of density, grain size on sintering temperature of 8YSZ specimens sintered by CRH sintering method
Fig. 3.22 Grain size distribution of sintered 8YSZ specimens of CRH -1525°C
Fig. 3.23(a) Microstructure showing the distribution of yttrium (at different locations), (b) EDS Spectrum of 8YSZ samples sintered by CRH sintering method
Fig. 3.24(a) Linear shrinkage of the 8YSZ slip cast specimens during sintering at heating rate of 10 °C /min
Fig. 3.24(b) Temperature regimes of RCS protocol
Fig. 3.25 RCS sintering curve of 8YSZ sample
Fig. 3.26 RCS sintering curve of 8YSZ sample: a comparison with CRH (Solid line CRH, Dashed line RCS) (a) complete range (b) from shrinkage region
Fig. 3.27 Microstructure of 8YSZ sample sintered by RCS method
Fig. 3.28 SEM image of the RCS sample (a) Grain size analysis by Linear Intercept Method (b) Grain size distribution
Fig. 3.29 Grain size distribution of sintered 8YSZ specimens of RCS -1525°C
Fig. 3.30 Comparison of microstructure of 8YSZ samples sintered (a) under CRH (1525°C/2h) (b) Under RCS protocol
Fig. 3.31 Microstructure of 8YSZ sample sintered under CRH at 1415°C
Fig. 3.32 Microstructure evolution in 8YSZ samples sintered under RCS protocol and heat treated at (a) 1409°C (b) 1413°C
Fig. 3.33 Temperature profile employed to sinter 8YSZ pellet by TSS
Fig. 3.34 Dependence of density on sintering temperature T_2 of 8YSZ specimens sintered by TSS method
Fig. 3.35 Microstructures of 8YSZ samples of TSS sintered at 1525°C and (a) 1300, (b) 1350 and (c) 1375°C
Fig. 3.36 SEM image of the TSS sample (a) Grain Size analysis by Linear Intercept Method, (b) Grain size distribution
Fig. 3.37 Dependence of density, grain size on sintering temperature T_2 of 8YSZ specimens sintered by TSS method
Fig. 3.38 Grain size distribution of TSS 8YSZ specimens sintered at 1525-1350°C
Fig. 3.39 Linear shrinkage of the 8YSZ slip cast specimens as per TSS heating schedule
Fig. 3.40 Microstructure evolution in 8YSZ samples sintered under TSS protocol at a) 1525°C b) 1350°C
Fig. 3.41 Microwave sintering furnace ((Linn High Therm GmbH, Germany)
Fig. 3.42 Temperature profile employed to sinter 8YSZ pellet by MWS
Fig. 3.43 Dependence of density and porosity on sintering temperature
Fig. 3.44 Microstructures of 8YSZ samples of MWS (a) 1475°C (b) 1525°C and (c) 1550°C
Fig. 3.45 SEM image of the MWS sample sintered at 1525°C (a) Grain Size analysis by Linear Intercept Method, (b) Grain size distribution
Fig.3.46. Dependence of density, grain size on sintering temperature of 8YSZ specimens sintered by MWS method

Fig.3.47 Grain size distribution of sintered 8YSZ specimens > 99 %

Fig.3.48 Schematic drawing to the scale and the dimensions of the die, punches, and spacers that were used to process 8Y zirconia powder with SPS

Fig.3.49 Spark Plasma Sintering Furnace

Fig.3.50 Temperature profile employed to sinter 8YSZ powder by SPS

Fig.3.51 Dependence of density on sintering temperature

Fig.3.52 Microstructures of 8YSZ samples of SPS sintered at (a) 1250°C (b) 1325°C and (c) 1425°C

Fig.3.53 SEM image of the SPS sample sintered at 1325°C (a) Grain Size analysis by Linear Intercept Method (b) Grain size distribution

Fig.3.54 Dependence of density, grain size on sintering temperature of 8YSZ specimens sintered by SPS method

Fig.3.55 Grain size distribution of sintered 8YSZ specimens of SPS -1325°C,

Fig.3.56(a) Typical aspect observed by TEM in 8YSZ sample sintered by SPS at 1325°C for 5 min (b) Moire’ patterns are observed everywhere

Fig.3.57 Effect of sintering methodology on density and grain size

Chapter IV:

Fig.4.1 Complex impedance plot

Fig.4.2 Impedance measurement set-up (Solartron SI1260, Ametek, Inc., Hampshire, UK) b) Furnace c) sample holder

Fig. 4.3 Sample holder assembly with sample

Fig. 4.4(a-b) Complex impedance plane plots of CRH, TSS, MWS and SPS specimens at the temperature interval 300°C - 400°C

Fig. 4.4(c-d) Complex impedance plane plots of CRH, TSS, MWS and SPS specimens at the temperature interval 600°C - 700°C

Fig.4.4(e) Complex impedance plane plots of CRH, TSS, MWS and SPS specimens at the temperature 800°C

Fig. 4.5 Cole-Cole plots at 300°C of SPS sintered 8YSZ samples

Fig.4.6 Equivalent circuit of 8 YSZ sample
Fig. 4.7(a-c) Arrhenius plots for the grain, grain boundary and total conduction of 8YSZ samples of different sintering techniques (d) Arrhenius plots for 8YSZ sintered by SPS at 1325°C and 1425°C

Fig. 4.8(a) Micrograph of 8YSZ SPS sample sintered at 1050°C and (b) Cole – Cole plot at 325°C (MK nano powder)

Fig. 4.9 Process Flow chart for the processing of NiO-8YSZ Compacts

Fig. 4.10(a) NiO - 8YSZ(sintered) and (b) Ni- 8YSZ (H2 reduced) pellets and corresponding microstructures

Fig. 4.11 Screen printing unit

Fig. 4.12 NiO – 8YSZ anode material screen printed on 8YSZ sintered electrolyte

Fig. 4.13 Micrograph of cross section of the electrolyte with anode coating

Fig. 4.14(a-d) Micrographs of cross section of the electrolyte with cathode coating along with coated pellet.

Fig. 4.15 Schematic diagram of the SOFC performance test facility at IIT, Chennai

Fig. 4.16 Effect of temperature on open circuit voltage for the single cell fabricated out of SPS sintered 8YSZ electrolyte