REFERENCES

1. Adler, F.H. (1965)
 Physiology of the Eye, 4th ed. C.V. Mosby, St. Louis.

 Functional Ultrastructure of the Arachnoid Villus.

 Two Dimensional Standing Gradient Osmotic Flow:
 A Generalization of the Isotonic Convection Approximation,

 The Calculated Glucose Concentration in the Intercellular Space of Everted Jejunum of Rat.

 Diffusion along Space: An Analysis of a Transient Situation

 Aqueous Humour Dynamics in Man as Studies by Oral Fluorescein,

 Boundary Condition at a Naturally Permeable Wall,

8. Becker, B. (1958)
 The Decline in Aqueous Secrecation and Outflow Facility with Age,
 Am. J. Ophthal., 46, 731-736.

 Water-drinking and Tonography in the Diagnostic of Glucose.
 Arch. Ophthal, 50, 322-326.

Hydrocephalus: Changes in Formation and Absorption of Cerebrospinal Fluid within the Cerebral Ventricles.

Kinetics of Unidirectional Glucose Transport into the Isolated Dog Brain.

Ocular Circulation

Blood Circulation and Fluid Dynamics in the Eye,

The Physiology and Pathophysiology of Intraocular Fluid

The Relation between the Concentrations of Amino Acids in the Ocular Fluids and Blood Plasma Dogs.

Outward Transport of Fluorescein from the Vitreous in Normal Human Subjects.
18. Blum, J.J. (1960)
Concentration Profiles in and Around Capillaries
Am. J. Physiol., 198, 991-998.

The Transport of Glucose into the Brain of the Rat in vivo,

Variazioni dell Dinamica Dellmor Acquco in Rapporto all eta Scnile
G. Geront, 8, 903-906.

Rilievi sull importanza della determinazione dell rigidito sclerabile sulla tonometeria di mass.

The diffusion permeability to water of the rat blood-brain barrier.
Ann. Physiol. Scand, 93, 415-422.

Blood-brain Barrier Permeability during elmtroshock seizures in the rate.

Drainage of Cerebral Interstitial Fluid into deep cervical lymph of the rabbit

The transport of glucose creatinine and certain monosaccharides between brain and fluid perfusing the cerebral ventricular system in rabbits.
J. Physiol. London, 170, 195-211.

Eflux mechanism contributing to the stability of potassium concentration in cerebrospinal fluid.
J. Physio (London), 208, 415-43.

The intracerebral movement of proteins injected into blood and cerebrospinal fluid of mice.

 Junctions between intimately opposed cell membranes in the vertebrate brain.

 Studies of blood capillaries. II transport of ferritin molecules across the wall of muscle capillaries.

 Experimental Retinal detachment VI The permeability of the blood-retina barrier
 Arch. Ophthal., 102, 747-751.

32. Casely-Smith, J.R.; Foleli-Borcok, E. and Foldi, n (1976)
 The prelymphatic pathways of the brain as revealed by cervical lymphatic observation and the passage of particles.
 Brit. J. Ex. Pathol., 57, 179-188.

 Rate of entrance of sodium into aqueous humour of the rabbit eye.

34. Cole, D.F. (1961a)
 Electrochemical changes associated with the formation of aqueous humour

 Comparative aspects of intraocular fluids in the eye.
 Vol. 5, Ch-2 (Eds. Davson, H. and Graham, L.T.)

Secretion of aqueous humour.
Exp. Eye. Res. 25 (Suppl), 177-190.

Facilitated transfer of glucose from blood into brain tissue.

Transport of solutes and water across the blood-brain barrier.

Transcapillary transport of small solutes and water.

Physiology of Choroid Plexus
Physiol. Rev. 51(5). 273-571.

41. Cserr, H.F., Copper D.N. and Suri, P.K. (1971)

Efflux of radiolabelled polyethylene glucols and albumin from rat brain.
Am. J. Physio., 240, 319-328.

42. Cserr, H.F.; Copper, D.N. and Milhorat (1977)

Flow of cerebral interstitial fluid as indicated by removal of extracellular markers from rat Caudate nucleus.

The blood ocular barriers.
Survey Ophthal, 23, 279-296.

The blood-retina barriers,
Nato Advanced Study Institute Series A,
Life Science, Vol. 32, New York,
Plenum Press.

The active transport of fluorescein by the retinal vessels and the retina.
J. Physiol. (Lond.), 191, 467-480.

Studies on the permeability of the blood-retina barrier. I. On the existence development and site of a blood-retina barrier.

Cerebrospinal Fluid: A Selective Review.

48. Darcy, H. (1856)

Les fontaines publiques de la ville de Dijon, Dalmon paris.

49. Davson, H. (1956)

Physiology of ocular and cerebrospinal fluid
London, Churchill.

50. Davson, H. (1964)

General Physiology

Physiology of Cerebrospinal fluid,
London Churchill.

The Eye.
Davson, H. ed., 2nd Ed., pp. 88-92,

The effect of some inhibitors and accelerators of sodium transport on the turnover of 24Na in the cerebrospinal fluid and the brain.
J. Physiol. (Lond.), 209, 131-153.

Diurnal variation of intra-ocular pressure in normal eye.
Arch. Ophthal. 69, 752-757.

The rate of substances injected into the anterior chamber of the eye.
J. Physiol. (London), 151, 202-2159.

A mechanism for coupling of water and solute transport in epithelia.
J. Gen. Physiol. 50, 2061-2083.

57. Dobbing, J. (1961)

The blood-brain barrier.
Physiol. Rev., 41, 130-188.

In choroid plexus in experimental hydrocephalus. A light and electron microscopic study in normal, hydrocephalic and shunted hydrocephalic dogs.

Relationship of consensual changes in intra-ocular pressure to arterial blood pressure
Arch. Ophthal, 66, 619-624.

The blood-testis barrier in the rat and physiological compartmentation of the seminiferous epithelium,
Flow and diffusion in the vitreous body of the eye.

Flow of Water in the Sclera

Flow conductivity of Retina and its role in retina adhesion
Ibid. 12, 218-226.

64. Fenstermacher, J.D. and Patlak, C.S. (1975)
The exchange of materia between cerebrospinal brospinal fluid and brain. In fluid environment of the brain, Ed. by Cserr, J.D. Fenstermacher and V.A.

Cerebrospinal fluid in diseases of the nervous system.
Philadelphia, W.B. Saunders, 384.

Carrier transport of glucose between blood and cerebrospinal fluid,
Am. J. Physiol. 206, 836-844.

Occult Hydrocephalus.

69. Fowlks, W.L. (1963)
Meridional flow from the corona ciliares through the pararetinal zone of the rabbit vitreous.
Invest Ophthalm, 2, 63-71.
 Agar microelectrophoresis of the aqueous humour.
 Arch. Ophthal, 40, 491-500

 A mechanism for coupling of water and solute transport in epithelia,
 J. Gen. Physiol.

 Physiology of the vitreous.
 In Adler's physiology of the eye, Ch. 8 (Ed. Moses R.A.) C.V. Mosby
 Saint Louis.

73. Goldmann, H. and Schmidt, J. (1965)
 An application of tonography ophthalmologica
 150, 65-75.

74. Gomez, D.G. and Potts, P.G. (1977)
 Effect of pressure on the arachonoid villus.

 The lateral, third and fourth ventricle choroid plexus of the dog: a structural
 and ultrastructural study.

76. Gomez, D.G.; Potts P.G.; Deonarine et al (1973)
 Effect of pressure gradient charges on the morphology of arachonoid villi and granulations
 of the monkey.
 Lab. Invest, 28, 648-657.

77. Green, J.E. and Pederson, J.E. (1973)
 Aqueous humour formation

78. Guyton, A.C. (1976)
 Textbook of Medicine Physiology.
 W.B. Saunders Company, Philadelphia.

K⁺ permeability of the blood-brain investigated by aid of ak⁺-sensitive microelectrode.

80. Hamburg, A. (1959)

Some investigation on the cells of vitreous body.

Posterior drainage of the intraocular fluid from the vitreous.

82. Heim, M. (1941)

Photographische Bestimmung der Tiefeund des Volumens der Menschlichen Vorder Kammen
Ophthalmologica, 102, 193-220.

Solute solvent coupling in epithelia, a critical examination of the standing gradient osmotic flow theory.

Evaluation of perivesicular hypodensity in experimental hydrocephalus by metrizamide
C.T. Ventriculography

85. Hildebran, F.B. (1968)

Method of Applied Mathematics,
Pentice-Hall, USA.

The hydrodynamic Resistance of Hyaluronic acid and its contribution to tissue permeability.
Biorheology, 19, 42-53.

Subarachnoid space of the CNS. nasal mucosa and lymphatic system.
Arch. otolearyngol, 105, 180-184.

The ultrastructural basis of capillary permeability studied with peroxidase as a tracer.

Transcapillary transport by Pinocytosis

Brain Potassium exchange in normal adult and immature rats.
Amer. J. Physiol. 175, 263-270.

91. Katzmann, R.; Pappius, H.M. (1973)

Brain electrolytes and fluid metabolism.
Baltimore Williams and Wikins, 419 pp.

Recent studies on the nature and function of the corneal endothelial barrier.

On the influence of a leaky tight junction on water and solute transport in epithelia

Ion Movemen in ciliary processes,
Chapter 6, 185-209.

Posterior and anterior aqueous humour formation
Arch. Ophthal, 50, 330-344.

The rabbit eye research.

Regehmassigen taglichen Schwangungen des Augendrucks und ihre urasache.
Arch. Augenheilk, 81, 120-142.

Transient transport across the blood-retina barrier.
Bull. of Math. Biol., 45, 749-758D.

The blood-retina barrier permeability of Diabetic Patients.
Acta Ophthalm, 59, 689-694.

Zur verbreitung des Glaucoma simplex in der scheinbar Gesunden, augenartlich

Tonometry and Tonography in a group health population.
Arch. Ophthalm. N.Y. 66, 42-47.

Charges in carbohydrate substances, amino acids by ammonia in the brain during insulin-induced
by polycyemia.

103. Linner, E. (1959)

The rate of aqueous flow in human eyes with
and without senile contract.
Arch. Ophthalm, 61, 520-527.
104. Linner, E. (1966)

The effect of pilocarpine and acetazolamide on the outflow resistance in normal and glaucomatous human eyes.
Documenta Ophthal., 20, 170-174.

The blood ocular barriers under osmotic stress. Studies on the freeze-dried eye.
Arch. Ophthal, 94, 1086-1091.

106. Lund-Andersen, H. (1979)

Transport of glucose from blood to brain

Glucose transport across the blood-brain on the significant effect of the cerebral glucose concentration upon the transport affinity constant.

Fluorescein in humour plasma in vivo
Acta Ophthal, in press.

Analytical analysis of the uptake of glucose analogous by brain cortex slices from normal and ischemic brain.

Kinetics of penetration of drugs and other foreign compounds into cerebrospinal fluid and brain.
J. Pharmacol, 112, 206-211.

Impairment of cerebrospinal fluid circulatiary dynamics in pseudotumour cerebri and response to steroid treatment
Neurology, 29, 550-570.
Recent research into the nature of cerebrospinal fluid formation and absorption

Lymphatic drainage of cerebrospinal fluid
in cat;

Lymphatic drainage of cerebrospinal fluid in the cat.

Biochemistry and Central nervous system,
London, Churchill.

Application of Poiseuille's law to aqueous outflow.
Arch. Ophthalm, 60, 97-125.

An advanced method of information processing
for clinical shitz tonograms.
Invest ophthalm. 12, 834-839.

118. Milholt, T.J. (1975)
The third circulation revisited.

119. Miller, J.E. (1962)
Alterations of the blood-aqueous potentials
in the rabbit.

Parsons disease of the eye.
Complex tight junctions of epithelial and of endothelial cells in early brain.
J. Neurosurgery, 4, 453-68.

122. Minner, L.C. and Reed, D.J. (1972)
Composition of fluid obtained from choroid plexus tissue isolated in a chamber in
situ.
J. Physiol. (Lond.), 227, 127-139.

Studies of fluid movement in the eye.

The movement of Xenon-133 from the vitreous to the choroid.

Aqueous humour dynamics of human eyes as studied using fluorescein.

Pharmacokinetics of fluorescein in the vitreous.

127. Paulson, O.B.; Hetz, M.M.; Bolowing, J.G. and
Larsen, N.A. (1977)
Filtration and diffusion of water across the blood-retina barrier in man.

Analysis of the distribution of materials within the blood-brain-cerebrospinal fluid
system.
129. Pederson, J.E. and Green, K. (1973)
Aqueous humour dynamics. A mathematical approach to measurement of facility, Pseudo-facility, Capillary Pressure. Active Secretion and X_c.

The effect of hyaluronodase injection on the vitreous humour of the rabbit.

131. Prince, J.H. (1964)
The Rabbit in eye research.
Charles C. Thomas Illinois.

132. Rall, D.P. (1968)
Transport through the ependymal linings.

133. Rashevsky, N. (1960)
Mathematical Biophysics. The physico-mathematical Foundations of Biology.

134. Raviola, G. (1971)
The fine structure of the ciliary zonulæ and the ciliary epithelium.
Invest Ophthal, 10, 851-69.

Effect of paracentesis on the blood-aqueous barrier: an electron microscopic study an Macaca Mulatta using horseradish peroxidase as a tracer.

Blood aqueous barrier can be circumvented by lowering intra-ocular pressure.

137. Raviola, G. (1977)

142. Rosengren, B. (1950)

143. Sackin, H. and Boulpaep, E.L. (1975)

144. Sahar, A. (1972)

145. Schmidt, T. and Goldmann, H. (1957a)
 Der Rigiditstskoeffzient (Friedenwald)

 Standing gradient flows driven by active solute transport.

 A combined physiological and morphological study of the secretary process in the rabbit choroid.

 The secretion of cerebrospinal fluid.

 The fine structure of the primate arachnoid villus under normal and experimental conditions.

 Electron microscopic studies on blood-retina and blood aqueous barriers.

151. Siesjo, B.K. (1978)
 Metabolism,
 New York, Wiley.

 Pathophysiology of anoxic brain damage,
 In: Biology of Brain Dysfunction ed. by

 Dextran and glycogens as particular tracers for studying capillary permeability

 Morphometric date on the endothelium of blood Capillaries.
155. Smith, R.S. (1971)

Ultrastructural studies of blood-aqueous barrier. I. transport of an electrondense tracer in the iris and ciliary body of the mouse.
Invest. Ophthal, 9, 221-228.

Ocular vascular and epithelial barriers to microperoxidase.
Invest. Ophthal, 14, 556-560.

157. Streicher, E., Rall, D.P. and Gaskins, J.K. (1964)

Distribution of thiocyanate between plasma and Cerebrospinal fluid.
Am. J. Physiol., 206, 251-254.

The use of integral Transforms.

A study of pressure distribution in the trabecular meshwork of human eye.

A mathematical model for the aqueous drainage through the trabecular meshwork of human eye.
Communicated in Kanpur University, J. Research.

Mathematical Model for intravitreal diffusion of a tracer across the blood-retina barrier.
Communicated in National Academy of Sciences.

A convective diffusion model of vitreous body in human eye.
Communicated in Indian J. Technology.
Analysis of the distribution of tracer across blood-vitreous barrier coupled with extrusion mechanism.

Dynamic viscoelasticity of bovine vitreous body.
Biorheology, 21(6), 751-756.

165. Vegge, T. (1971a)
An epithelial blood-aqueous barrier to horseradish peroxidase is in processes of the newt monkey
(Caropithecus aethiops). Z. Zellforsch.

166. Vegge, T. (1971b)
An electron microscopic study of the permeability of iris capillaries to horseradish peroxidase in the newt monkey
(Cercopithecus aethiops), Z. Zellforsch.

167. Voetmann, E. (1949)
On the structural and surface area of the human choroid plexuses. A quantitative anatomical study.
Acta. Anat. 8 (Suppl. 10), 91-116.

On the movement of water solute in extracellular channel with filtration, Osmosis and active transport.

The role of secretion and pressure-dependent flow in aqueous formation.
169. Weinbaum, S. (1965)
A mathematical model for the elastic and fluid mechanical behaviour of the human eye.
Math. Biophy. 27, 323

170. Welch, K. (1963)
Secretion of cerebrospinal fluid by choroid of the rabbit.
Am. J. Physiol., 205, 617-624.

171. Welch, K. (1975)
The principles of physiology of cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus.
In Friedlande, W.J. ed. Current Reviews, Advance in

Permeability of the choroid Plexus of the rabbit to several solutes.
Am. J. Physiol., 210, 562-570.

173. Wright, E.M. (1972)
Mechanism of ion transport across the choroid plexus.
J. Physiol. (Lond.), 226, 545-571.

Neuroendocrinology of cerebrospinal and partitulate substances from the cerebrospinal fluid system of the Rat.

Coupled water transport in standing gradient models of the lateral intercellular space.

Cerebrospinal fluid may nourish cerebral vessels through pathways in the adventitia that may be analogous to systemic vasa vasorum.
J. Neurosurg., 55, 475-481.