Introduction: Background Literature

1.1 General

1.1.1 Plastic: History

1.1.2 Raw materials for plastics

1.1.3 Chemistry, types, properties and uses of plastics

1.1.4 Environmental issues related to plastics

1.2 Disposal methods

1.2.1 Recycling

1.2.2 Incineration

1.2.3 Landfills

1.2.4 Construction of roads

1.3 Degradation of Plastics

1.3.1 Thermal Degradation

1.3.2 Ozone-induced degradation

1.3.3 Biodegradation

1.3.4 Advanced Oxidation Processes (AOP)

1.3.4.1 Homogeneous AOP

1.3.4.2 Heterogeneous AOP

1.3.4.3 General mechanism of AOP

1.3.4.4 Photocatalysis

1.3.4.4.1 Homogeneous photocatalysis

1.3.4.4.2 Heterogeneous photocatalysis

1.3.4.4.2.1 Semiconductors as Photocatalysts

1.3.4.4.2.2 Typical photocatalytic studies on plastic materials

Objectives of the Study, Materials Used and Plan of the Thesis

2.1 Objectives

2.2 Materials used

2.2.1 Titanium dioxide (TiO₂)

2.2.2 Zinc oxide (ZnO)

2.2.3 Potassium peroxydisulphate

2.2.4 Hydrogen peroxide (H₂O₂)

2.2.5 Fenton reagent

2.2.6 Polyethylene (PE) plastic

2.2.7 Polyvinyl chloride (PVC)

2.3 Miscellaneous materials
Chapter 3
PATTERN OF THE USE AND DISPOSAL OF PLASTIC PRODUCTS IN A TYPICAL VILLAGE COMMUNITY IN KERALA STATE, INDIA: A CASE STUDY 69-92

3.1 Introduction ... 69
3.2 Methodology ... 71
3.3 Results and Discussion ... 75
 3.3.1 Quantity of plastic wastes generated 75
 3.3.2 Types of common plastic wastes 76
 3.3.3 Category-wise quantification of different types of waste 83
 3.3.4 Quantity of plastic waste vs family size 84
3.4 Questionnaire survey of plastic pollution-related facts 85
 3.4.1 Findings from the questionnaire survey 86
3.5 Conclusions ... 91

Chapter 4
SEMICONDUCTOR OXIDE MEDIATED PHOTOCATALYTIC DEGRADATION OF LOW DENSITY POLYETHYLENE PLASTIC WASTES 93 - 166

4.1 Introduction ... 93
4.2 Material and Methods ... 96
 4.2.1 ZnO ... 96
 4.2.2 TiO$_2$.. 99
 4.2.3 Miscellaneous chemicals 103
4.3 Photocatalytic experiments ... 104
4.4 Results and Discussion .. 106
 4.4.1 Effect of catalyst dosage 107
 4.4.2 Effect of irradiation time 108
 4.4.3 Effect of pH .. 109
 4.4.4 Effect of oxidizers on the degradation 111
 4.4.5 Use of Fenton reagent for the degradation of LDPE 116
 4.4.5.1 Photofenton process 119
 4.4.6 Effect of anions and cations on TiO$_2$/UV system 126
 4.4.6.1 Adsorption of anions on the catalyst 130
 4.4.6.2 Scavenging effect of anions 131
 4.4.6.3 Surface layer formation 132
 4.4.6.4 Steric effect .. 135
 4.4.7 Effect of cations ... 137
4.4.8 Effect of anions on TiO₂/PDS/UV system .. 140
4.4.9 Degradation of LDPE plastic in sea water ... 142
4.4.10 Effect of carbon ... 145
4.4.11 Effect of colour of the plastic sheet on the degradation 147
4.4.12 Effect of thickness of plastic sheet ... 148
4.4.13 Role of O₂/air in photocatalysis ... 149
4.4.14 Recycling of TiO₂ ... 150
4.4.15 Characterisation of used TiO₂ catalyst ... 153
4.4.16 Physical and chemical changes in LDPE after photocatalysis 158
4.4.17 Mechanism of semiconductor photocatalysis 160
4.5 Conclusions .. 165

Chapter 5
PHOTOLYTIC/PHOTOCATALYTIC DEGRADATION OF POLYVINYL CHLORIDE PLASTIC WASTES FROM THE ENVIRONMENT ... 167 - 208
5.1 Introduction .. 167
5.2 Materials and Methods .. 169
5.3 Results and Discussion ... 170
 5.3.1 Effect of dosages of TiO₂ and ZnO .. 171
 5.3.2 Effect of pH .. 173
 5.3.3 Effect of H₂O₂ on the degradation .. 174
 5.3.4 Effect of Fenton reagent on the degradation 176
 5.3.5 Effect of peroxydisulphate on the degradation 182
 5.3.6 Effect of anions and cations .. 195
 5.3.7 Effect of thickness of plastic sheet .. 199
 5.3.8 Effect of combination of pollutants on the degradation of individual components .. 199
 5.3.9 Mechanism of the photolytic/photocatalytic degradation of polyvinyl chloride ... 203
5.4 Conclusions .. 207

Chapter 6
SOLAR PHOTOLYSIS AND OTHER ADVANCED OXIDATION PROCESSES FOR THE DEGRADATION OF POLYETHYLENE AND POLYVINYL CHLORIDE PLASTICS ... 209 - 248
6.1 Introduction .. 209
6.2 Materials and Methods .. 211
 6.2.1 Materials ... 211
 6.2.2 Experimental set up ... 211
6.3 Results and Discussion .. 212
List of Tables

Table 1.1 Common plastics resin code, characteristics and applications ... 08
Table 1.2 Plastic consumption worldwide.. 11
Table 1.3 Approximate quantity of different types of plastic used over the years (in '000 tons)... 11
Table 1.4 Oxidation potential of common oxidizing agents. 36
Table 1.5 Summary of the major homogeneous photocatalytic processes... 40
Table 2.1 Properties of TiO$_2$... 57
Table 2.2 Properties of Zinc oxide .. 60
Table 2.3 Properties of K$_2$S$_2$O$_8$.. 61
Table 2.4 Properties of H$_2$O$_2$... 62
Table 3.1 Income category and age of members of individual family who participated in the survey 73
Table 3.2 Selected questions in the questionnaire related to the general awareness of plastics and the answers provided by the respondents... 86
Table 3.3 Responses to the questions related to the disposal of plastic waste ... 88
Table 3.4 Responses to the questions related to the awareness of the hazards of plastic products 89
Table 3.5 Responses to the questions related to what individuals can do to reduce related plastic related hazards 91
Table 4.1 The scavenging rate constants of OH by some of the anions......... 132
Table 4.2 Ionic radius of halide ions .. 136
Table 4.3 Characteristics of sea water relevant in photocatalysis 142
Table 4.4 Effect of thickness of LDPE plastic sheet on its photocatalytic degradation in presence of TiO$_2$ and PDS ... 149
Table 4.5 Comparison of EDAX data of TiO$_2$ before and after use for the LDPE degradation... 156
Table 4.6 Physical characteristics of TiO$_2$ before and after UV treatment... 156
Table 5.1: Effect of thickness of plastic sheet on the photodegradation of PVC plastic in presence of PDS [PDS]: 2000mg/L.............. 199

Table 6.1 (a) The effect of exposed surface area on the rate of solar degradation of LDPE plastic ... 236

Table 6.1 (b) The effect of exposed surface area on the rate of solar degradation of PVC plastics ... 236

Table 6.2 (a) Confirmation of the importance of solar exposed surface for the degradation of LDPE plastic 237

Table 6.2 (b) Confirmation of the importance of solar exposed surface for the degradation of PVC plastic 237

Table 6.3 (a) The effect of specimen thickness on the rate of degradation of LDPE plastic ... 238

Table 6.3 (b) The effect of specimen thickness on the rate of degradation of PVC plastic ... 238

Table 6.4 Comparison of properties of various water samples 243
Figure 1.1	Structure of thermoplastics and thermosetting plastics 07
Figure 1.2	Statistics of the production of plastic from 1995-2010 10
Figure 1.3	The annual production of plastic worldwide 10
Figure 1.4	Plastic consumption pattern (India) 12
Figure 1.5	Accumulation of plastic wastes 13
Figure 1.6	Animals eating plastic, mistaking for food 16
Figure 1.7	Commonly used disposal methods for plastics 17
Figure 1.8	Special characteristics of `OH ... 33
Figure 1.9	Classification of Advanced Oxidation Processes 34
Figure 1.10	Wave length range of various photoprocesses 39
Figure 1.11	Energy bands of insulators, conductors and semiconductors 42
Figure 1.12	Energy bands of pure, n-type and p-type semiconductors 43
Figure 1.13	Energy level diagram for typical semiconductors 44
Figure 1.14	Schematic diagram illustrating the principle of Semiconductor photocatalysis .. 45
Figure 2.1	Structures of Rutile and Anatase TiO₂ [128] 56
Figure 2.2	Structure of ZnO wurtzite [4] .. 59
Figure 2.3	Structure of K₂S₂O₈ .. 62
Figure 2.4	Structure of H₂O₂ .. 62
Figure 2.5	Structure of PVC ... 65
Figure 3.1	Geographical location of Kadukutty village 72
Figure 3.2	(A) ‘Plastic waste’ collection containers with lids given to the sample households (B) Plastics wrapped in thick plastic bags .. 75
Figure 3.3	Total quantity of plastic waste generated from all sample households during the study period (2014-15) 75
Figure 3.4A	Typical assorted ‘carry bags’ in the plastic waste 76
Figure 3.4B	Combined monthly accumulation of ‘carry bags’ from all sample households .. 77
Figure 3.5A	Month-wise accumulation of used lighter, thinner plastic bags/paper .. 79
Figure 3.5B	Typical light weight waste plastic carry bags from an average household ... 79
Figure 3.6A Month-wise accumulation of ‘ready to eat’ food-related plastic waste from all the sample households combined 80
Figure 3.6B Typical bakery/food related plastic waste ... 81
Figure 3.7A Monthly accumulation of hard plastics in all sample households combined ... 82
Figure 3.7B Typical hard plastic wastes from sample households 82
Figure 3.8 Cumulative category-wise distribution of different types of plastic wastes from all households during study period (4 months) .. 83
Figure 3.9 Family size vs income vs plastic waste generation
m: number of members in the family, Av: Average 85
Figure 4.1 Pore size distribution of ZnO .. 96
Figure 4.2 TEM image of ZnO .. 97
Figure 4.3 XRD pattern of ZnO .. 98
Figure 4.4 SEM image of ZnO .. 98
Figure 4.5 Pore size distribution of TiO₂ .. 99
Figure 4.6 TEM image of TiO₂ .. 100
Figure 4.7 XRD pattern of TiO₂ (Anatase) ... 101
Figure 4.8 XRD pattern of TiO₂ (Rutile) ... 102
Figure 4.9 XRD pattern Commercial TiO₂ (Anatase and Rutile) 102
Figure 4.10 SEM image of TiO₂ .. 103
Figure 4.11 Multilamp photoreactor-external view .. 104
Figure 4.12 Schematic diagram of the multilamp photoreactor 105
Figure 4.13 Schematic diagram of the multilamp photoreactor- reaction chamber and back view ... 105
Figure 4.14 Multilamp photoreactor-inside and top view 106
Figure 4.15 Comparative efficiency of TiO₂ and ZnO at different dosages for the photocatalytic degradation of LDPE plastic 108
Figure 4.16 Effect of irradiation time on the TiO₂ mediated photocatalytic degradation of LDPE plastic .. 109
Figure 4.17 Effect of pH on the photocatalytic degradation of LDPE plastic 110
Figure 4.18 Comparative efficiency of H₂O₂ and S₂O₅²⁻ for the photocatalytic degradation of LDPE plastic in presence of TiO₂ .. 112
Figure 4.19 Effect of in-between addition of PDS on the photocatalytic degradation of LDPE plastic in presence of TiO₂ + PDS 113
Figure 4.20 Effect of concentration of H₂O₂ and PDS on the photocatalytic degradation of LDPE plastic in presence of TiO₂ .. 114
Figure 4.21 Effect of TiO$_2$ on the photocatalytic degradation of LDPE plastic in presence of PDS and H$_2$O$_2$..........................115

Figure 4.22 Effect of combination of H$_2$O$_2$ and PDS on the photocatalytic degradation of LDPE plastic in the presence of TiO$_2$...115

Figure 4.23 Effect of FS/H$_2$O$_2$ ratio on the efficiency of Fenton degradation of LDPE plastic under ambient conditions117

Figure 4.24 Effect of concentration of Fenton reagent on the rate of degradation of LDPE plastic under ambient conditions118

Figure 4.25 Effect of in-between addition of FR/H$_2$O$_2$/FeSO$_4$ on the Fenton degradation of LDPE plastic under ambient conditions ...119

Figure 4.26 Optimisation of FS/H$_2$O$_2$ ratio for the photofenton degradation of LDPE plastic with and without TiO$_2$.............120

Figure 4.27 Effect of concentration of Fenton reagent on the rate of photodegradation of LDPE plastic in presence of TiO$_2$.........121

Figure 4.28 Efficiency of Fenton Reagent for the Photocatalytic degradation of LDPE Plastic with and without TiO$_2$122

Figure 4.29 Effect of in-between addition of FR/H$_2$O$_2$/Fe$^{2+}$ on the TiO$_2$/Fenton/UV degradation of LDPE plastic123

Figure 4.30 Comparative efficiency of various oxidant containing systems for the photocatalytic degradation of LDPE plastic124

Figure 4.31 Effect of various anions on the photocatalytic degradation of LDPE plastic in presence TiO$_2$127

Figure 4.32 Effect of various anions on the photocatalytic degradation of LDPE in presence of TiO$_2$..128

Figure 4.33 Effect of various halides on the photocatalytic degradation of LDPE in presence of TiO$_2$.................................129

Figure 4.34 FTIR spectrum showing adsorption of phosphate on TiO$_2$.........131

Figure 4.35 Effect of various cations on the photocatalytic degradation of LDPE plastic on TiO$_2$...138

Figure 4.36 Effect of various potassium salts on the photocatalytic degradation of LDPE in presence of TiO$_2$........................139

Figure 4.37 Comparative efficiency of K$_2$S$_2$O$_8$ and Na$_3$S$_2$O$_8$ on the Photocatalytic degradation of LDPE in presence of TiO$_2$...140

Figure 4.38 Effect of various anions on the photocatalytic degradation of LDPE plastic in presence of TiO$_2$+PDS141

Figure 4.39 Comparative photocatalytic degradation of LDPE plastic in sea water and distilled water143
Figure 4.40 Effect of NaCl at various concentrations on the photocatalytic degradation of LDPE plastic in presence of TiO$_2$... 144

Figure 4.41 Effect of ‘TiO$_2$ calcined with carbon (TC)’ on the photocatalytic degradation of LDPE ... 146

Figure 4.42 Effect of calcination of TiO$_2$ with carbon (TC) on of the photocatalytic degradation of LDPE plastic in presence of PDS and H$_2$O$_2$... 146

Figure 4.43 Samples of coloured LDPE plastic ... 147

Figure 4.44 Effect of colour of the plastic on the photocatalytic degradation rate in presence of TiO$_2$/PDS/UV ... 148

Figure 4.45 Effect of deaeration (by N$_2$ flushing) on the photocatalytic degradation of LDPE ... 150

Figure 4.46 Effect of recycled TiO$_2$ for the photocatalytic degradation of LDPE plastic ... 152

Figure 4.47 Effect of recycled TiO$_2$ for the photocatalytic degradation of LDPE plastic in presence of PDS ... 152

Figure 4.48 SEM image of TiO$_2$ used for 120 hr ... 153

Figure 4.49 SEM image of TiO$_2$ used with PDS for 120 hr ... 153

Figure 4.50 SEM EDAX of (a) fresh TiO$_2$ (b) TiO$_2$ used (120 hr) and (c) TiO$_2$ used with PDS (120 hr) ... 154-155

Figure 4.51 XRD of (a) TiO$_2$ used (120 hr) and (b) TiO$_2$ used with PDS (120 hr) ... 157

Figure 4.52 SEM images of LDPE (a) before and (b) after Photocatalytic treatment using TiO$_2$ (1400 mg/L) and PDS (2000 mg/L), Time: 300 hr ... 158

Figure 4.53 FTIR spectra of (a) untreated and (b) treated LDPE ... 159

Figure 4.54 Mechanism of TiO$_2$ photocatalysis showing formation of OH and H$_2$O$_2$[151] ... 161

Figure 5.1 Typical PVC samples used in the study ... 170

Figure 5.2 Effect of ZnO and TiO$_2$ on the photocatalytic degradation of PVC plastic ... 171

Figure 5.3 Effect of dosage of TiO$_2$ and ZnO on the photocatalytic degradation of PVC plastic ... 172

Figure 5.4 Effect of pH on the photocatalytic degradation of PVC plastic in presence of TiO$_2$... 173

Figure 5.5 Effect of H$_2$O$_2$ on the photocatalytic degradation of PVC with and without TiO$_2$... 175
Figure 5.6 Effect of Fe$^{2+}$/H$_2$O$_2$ ratio on the efficiency of Fenton degradation of PVC plastic in UV light .. 177

Figure 5.7 Effect of concentration of Fenton reagent on the rate of photodegradation of PVC plastic ... 178

Figure 5.8 Effect of pH of Fenton reagent on the degradation of PVC plastic .. 179

Figure 5.9 Effect of in-between addition of FR/H$_2$O$_2$/FS on the Fenton degradation of PVC plastic under UV irradiation 180

Figure 5.10 Effect of PDS on the photodegradation of PVC plastic with and without TiO$_2$... 182

Figure 5.11 Comparative efficiency of TiO$_2$, PDS and TiO$_2$+ PDS on the photodegradation of PVC plastic .. 183

Figure 5.12 Effect of PDS on the degradation of PVC plastic .. 184

Figure 5.13 Comparative efficiency of TiO$_2$, TiO$_2$ + H$_2$O$_2$, Fenton reagent and PDS for the photodegradation of PVC plastic 185

Figure 5.14 SEM images of PVC plastic (a) before, (b) after photolytic treatment using PDS (2000 mg/L), Time: 400 hr and (c) after photolytic treatment using FR (FS: H$_2$O$_2$; 80:400 mg/L), Time: 400 hr ... 186

Figure 5.15 FTIR spectra of PVC (a) untreated and (b) treated under UV for 400hrs with PDS ... 187 - 188

Figure 5.16 Efficiency of PDS on the degradation of PVC plastic at different conditions... 189

Figure 5.17 Schematic diagram illustrating the principle of semiconductor photocatalysis [194] ... 191

Figure 5.18 Effect of anions on the PDS promoted photocatalytic degradation of PVC ... 195

Figure 5.19 Effect of cations on the photocatalytic degradation of PVC in presence of PDS... 196

Figure 5.20 Comparative efficiency of K$_2$S$_2$O$_8$ and Na$_2$S$_2$O$_8$ for the Photodegradation of PVC ... 197

Figure 5.21 Effect of concentration of K$^+$ ions on the photocatalytic degradation of PVC in presence of PDS... 198

Figure 5.22 Effect of concentration of Na$^+$ ions on the photocatalytic degradation of PVC in presence of PDS ... 198

Figure 5.23 Comparative photodegradation of LDPE plastic individually and when in combination with PVC ... 200

Figure 5.24 Comparative photodegradation of PVC plastic individually and when in combination with LDPE ... 201
Figure 5.25 Effect of TiO₂ on the degradation of LDPE and PVC plastics when they are present together .. 202
Figure 5.26 Effect of increase in concentration of TiO₂ on the photocatalytic degradation of LDPE and PVC plastics in combination ... 202
Figure 6.1 Factors affecting solar photodegradation of plastics 210
Figure 6.2 Solar experimental set up .. 212
Figure 6.3 Effect of TiO₂ loading on the solar photocatalytic degradation of LDPE and PVC .. 213
Figure 6.4 Efficiency of recycled catalyst for the photocatalytic degradation of LDPE plastic .. 214
Figure 6.5 Efficiency of recycled catalyst for the photocatalytic degradation of PVC plastic .. 214
Figure 6.6 Effect of H₂O₂ on the solar degradation of LDPE and PVC plastic with and without TiO₂ .. 216
Figure 6.7 Effect of PDS for the solar degradation of LDPE and PVC plastics with and without TiO₂ ... 217
Figure 6.8 Solar degradation of LDPE and PVC plastic with and without PDS .. 218
Figure 6.9 LDPE plastic samples (a) before and (b) after irradiation 219
Figure 6.10 Effect of PDS for the solar degradation of LDPE plastic 220
Figure 6.11 Effect of PDS for the solar degradation of PVC plastic 220
Figure 6.12 Comparative effect of UV and sunlight on PDS initiated degradation of LDPE and PVC plastic .. 221
Figure 6.13 Effect of FS/H₂O₂ ratio on the efficiency of Fenton degradation of LDPE plastic under sunlight ... 222
Figure 6.14 Effect of concentration of Fenton reagent on the rate of degradation of LDPE plastic .. 223
Figure 6.15 Effect of FS/H₂O₂ ratio on the efficiency of Fenton degradation of PVC plastic under sunlight ... 224
Figure 6.16 Effect of concentration of Fenton reagent on the rate of degradation of PVC plastic .. 224
Figure 6.17 Comparative efficiency of H₂O₂, Fenton reagent and PDS for the solar degradation of LDPE ... 225
Figure 6.18 Comparative efficiency of H₂O₂, Fenton reagent and PDS for the solar degradation of PVC .. 225
Figure 6.19 Effect of temperature on the solar degradation of LDPE plastic in presence of PDS ... 226
Figure 6.20 Effect of temperature on the solar degradation of PVC plastic in presence of PDS ... 227
Figure 6.21 Effect of anions on the solar degradation of LDPE plastic in presence of PDS .. 228
Figure 6.22 Effect of sulphate and carbonate ions on the solar degradation of LDPE in presence of PDS 229
Figure 6.23 Effect of anions on the solar degradation of PVC plastic in presence of K$_2$S$_2$O$_8$.. 230
Figure 6.24 Effect of cations on the solar degradation of LDPE plastic in presence of PDS .. 231
Figure 6.25 Effect of cations on the solar degradation of PVC plastic in presence of PDS .. 231
Figure 6.26 Effect of K$^+$ and Al$^{3+}$ on the solar degradation of LDPE plastic in presence of PDS .. 232
Figure 6.27 Effect of humic acid on the solar degradation of LDPE plastic in presence of PDS .. 233
Figure 6.28 Effect of humic acid on the solar degradation of PVC plastic in presence of PDS .. 233
Figure 6.29 Degradation of LDPE at different light intensities 234
Figure 6.30 Solar degradation of PVC at different light intensities 235
Figure 6.31 Samples of coloured LDPE sheets 239
Figure 6.32 Effect of colour on the solar degradation of LDPE plastic in presence of PDS .. 240
Figure 6.33 Comparison of solar degradation LDPE, HDPE and PVC Individually and in combination, under identical conditions 241
Figure 6.34 Experimental set up for comparing the degradation of plastics in different types of water ... 242
Figure 6.35 Solar degradation of LDPE (when present individually as well as in combination) in different types of water matrix 244
Figure 6.36 Solar degradation of HDPE (when present individually as well as in combination) in different types of water matrix 244
Figure 6.37 Solar degradation of PVC (when present individually as well as in combination) in different types of water matrix 245