Chapter 3

Ultrafast Events in the Folding of Ferrocytochrome c Initiated by Pulsed Laser Photolysis

3.1 Abstract

Laser flash photolysis and stopped-flow methods have been used to study the dynamic events in the micro- to millisecond time bin in the refolding of horse ferrocytochrome c in the full range of guanidinium hydrochloride concentration at pH 12.8(±0.1), 22°C. Under the absolute refolding condition, the earliest relaxation time of the unfolded protein chain is less than 1 µs. The chain then undergoes diffusive dynamics-mediated contraction and expansion in which intrapolypeptide ligands make transient contacts with the heme iron giving rise to two distinct kinetic phases of ~0.4 and ~3 µs. Under moderate to absolute refolding conditions, the rates of these processes show little dependence on the denaturant concentration, indicating the absence of structural element in the incipient or the relaxed state. Chain expansion and contraction events continue until the polypeptide finds a stable and supportive transition state. The crossing of this transition barrier, which rate-limits the folding of alkaline ferrocytochrome c, is characterized by a stopped-flow measured time constant of ~3 ms in aqueous solvent. Observed kinetics thus implicate no submillisecond folding structure. The folding kinetics is effectively two-state in which the unfolded polypeptide first relaxes to an unstructured chain, and then crosses over a late rate-limiting barrier to achieve the native conformation. The experimentally observed rates as a function of guanidinium hydrochloride concentration have been simulated by
numerically calculated microscopic rates of a simple kinetic model that captures the essential features of folding.

3.2 Introduction

Isolated peptide fragments in solution often show tendency to form helices and turns (98-100), and they may form too rapidly in the intact protein. For example, folding of model peptide α-helix (101-103), and β-hairpin fragment (104) occurs in nanoseconds to a few microseconds. These observations raise the possibility that small single domain proteins could also have submillisecond folding phases in which secondary structural elements are seeded for facilitating efficient and biased folding. Fast folding experiments have thus attracted the attention of many for over a decade.

The first ultrafast experiment was based on the fact that the two-state folding transition (N ↔ U) of ferrocytochrome c (ferrocyt c) is shifted to lower concentration of guanidinium hydrochloride (GdnHCl) when the solvent is saturated with ~1 mM CO (25, 105). The shift occurs because of preferential binding of CO to the unfolded protein. Within a narrow range of GdnHCl, between ~4.2 and 4.7 M, the CO-bound protein is unfolded but the CO-free form is nativelike. It follows that photodissociation of CO within this window of GdnHCl will initiate folding (105). However, this is an extremely poor condition to study protein folding, since the required concentration of the denaturant to make the experiment work is just too close to the transition midpoint (~5.1 M GdnHCl) of ferrocyt c (see Figures 1.4.3a, 2.4.1, 2.4.2b, and ref 18). A similar photochemical protocol that takes advantage of the stability difference of the two oxidation states of cyt c in order to initiate refolding of ferrocyt c by rapidly
injecting an electron into the ferric heme of unfolded ferricyt c \((106)\), works only under conditions where no substantial driving force for folding is available.

In other approaches, laser T-jump methods have been used to monitor fast folding events for a number of peptides and proteins, including barstar \((107)\), apomyoglobin \((108-110)\), En-HD protein \((111)\), and \(\lambda_{6-85}\) protein \((112)\). An elegant application of laser flash photolysis for direct estimation of the speed limit for protein folding has been described \((113)\). Ultrarapid mixing methods have been introduced to measure earliest folding events in ferricyt c \((108, 114-116)\), acyl-CoA binding protein \((117)\), the four-helix protein Im7 \((118)\), and \(\beta\)-lactoglobulin \((119)\). NMR and hydrogen-exchange methods have been used for microsecond studies of monomeric \(\lambda\) repressor \((120)\) and a crossed-link variant of the GCN4 coiled coil \((121)\).

For several reasons, however, carbonmonoxycyt c continues to be an indispensable standard system in the fast-folding field. Being a single-domain fast-folding protein, ferrocyt c is paradigmatic \((5, 14, 25-28)\). Since photodissociation of CO occurs in subpicosecond times \((122)\), there is virtually no dead time for probing the dynamics of the refolding polypeptide. The presence of the heme renders possible the use of a variety of additional spectroscopic probes in time-resolved mode, including optical spectroscopy and magnetic circular dichroism \((123-124)\). Even though low denaturant conditions under which CO-photolysis could generate a large driving force to folding were not found in earlier studies, the carbonmonoxycyt c system has been used extensively to extract information about diffusive dynamics of polypeptides in solvents containing denaturing to unfolding concentrations \((4-7.4 \text{ M})\) of GdnHCl \((125, 126)\).
This Chapter describes absolute refolding conditions under which CO photolysis can be performed to check for ultrafast events in the folding of ferrocyan. In strongly alkaline medium CO-bound ferrocyan is steadily unfolded irrespective of the inclusion or exclusion of GdnHCl. On the other hand, NMR spectra indicate that in the absence of CO and GdnHCl, alkaline ferrocyan is very similar to the neutral-pH native state in terms of secondary and tertiary structural content (27). Alkaline ferrocyan exhibits a well-defined cooperative unfolding transition when titrated with GdnHCl ($C_m = 2.6 \pm 0.2$ M). Based on these observations, carbonmonoxycyan has been poised for laser photolysis in the 0-4 M range of GdnHCl. The results in conjunction with millisecond stopped-flow data have been used to present a two-state folding model. Observed rates in micro- to millisecond times have been numerically simulated by calculations of microscopic rates. Submillisecond events in the folding of alkaline ferrocyan consist of an initial relaxation followed by rapid contraction and expansion of the chain until a rate-limiting folding barrier is found.

3.3 Materials and Methods
Equine cyt c (Type VI) was from Sigma, and GdnHCl and sodium dithionite were from USB and Merck, respectively. The pH-induced equilibrium titration experiments were done in equimolar ~10 mM Tris-HCl, sodium diphosphate, and CAPS buffers. GdnHCl-induced equilibrium unfolding transition at alkaline pH were done in 2 mM CAPS (3-[Cyclohexylamino]-1-propanesulfonic acid) buffer. Experiments were done under controlled anaerobic atmosphere at 22°C, pH 12.7–13.0 using NaOH (with or without 1-2 mM CAPS). Solutions contained 0.5-3 mM freshly prepared sodium dithionite, and
experiments were completed within 2 hours of exposing the protein to high pH. Fluorescence changes at high pH were corrected by using NATA fluorescence.

3.3.1 Equilibrium unfolding

Cyt c solutions, with or without 1 mM CO, were deaerated and reduced under nitrogen with 1 mM sodium dithionite, and incubated in capped quartz cuvettes or rubber-capped glass tubes for ~30 minutes. Fluorescence emission spectra (ex: 280 nm) and optical absorption spectra were recorded using procedures described in earlier chapters. Data were analyzed using the standard two-state equations for equilibrium unfolding (see eq 1 Chapter 1, and ref 24).

3.3.2 Stopped-flow measurements

All stopped-flow experiments involved two-syringe mixing. Cyt c, initially unfolded in ~5 M GdnHCl and held at pH 12.7 by employing 2 mM CAPS and concentrated NaOH, was reduced under nitrogen by adding a concentrated solution of sodium dithionite to a final concentration of ~3 mM, and incubated at 22°C for ~30 minutes. The final protein concentration in the refolding mixture was in the 10-15 µM range. In unfolding experiments, performed following the same procedure of two-syringe mixing, the final protein concentration was 6-10 µM. Fluorescence-monitored stopped-flow kinetics were measured as described in preceding chapters. Excitation wavelength was 280 nm, and emission was measured using a 335 nm cut-off filter. Traces were analyzed using single- or double-exponential functions to extract apparent rates, λᵢ. the initial signal, S₀, that corresponds to the ‘zero-time’ signal in the stopped-flow time window, the observed signal, S₁obs, and the final equilibrium signal, S₁∞, corresponding to the signal value at t = t₁. The S₀, S₁obs, and S₁∞ signals were subjected to initial normalization by first subtracting the buffer fluorescence.
signals, and then dividing by the recorded signal of the unfolded protein in the highest GdnHCl concentration. In the unfolding set of measurements the S_{∞} value of the kinetic trace at the highest concentration of GdnHCl employed was used to divide the fluorescence signals.

3.3.3 Laser photolysis and microsecond measurements

10-12 µM cyt c solutions, prepared in 2 mM CAPS and concentrated NaOH, pH 12.9(±0.1), were deaerated and reduced by the addition of 2 mM sodium dithionite, and were incubated for 15-30 minutes at 22°C under 1 atmosphere CO gas pressure in 1-cm square quartz cuvettes. CO photolysis was achieved by irradiation with 45(±10) mJ pulses of the 532-nm second harmonic light of a Spectra Physics Q-switched Nd/YAG laser (10 Hz). Spectral changes following each photolysis pulse were recorded with a pulsed Xe lamp. The basic configuration of the instrument is based on the Applied Photophysics laser flash photolysis spectrometer. The sample temperature was maintained by using an external circulating water bath. Single-wavelength kinetic traces were analyzed by single- or double-exponential functions.

3.3.4 Simulation of kinetic data

For numerical calculation of the microscopic rate constants, k_j ($j=+\text{M}, -\text{M}, +\text{H}, -\text{H}, +\text{CO}, -\text{CO}, f, \text{ and } u$), a 5x5 rate matrix was set up from the five coupled linear differential equations for the states represented by Fe$^{2+}$, Fe$^{2+}$–Met, Fe$^{2+}$–His, Fe$^{2+}$–CO, and N. The eigenvalues, λ_i ($i=1,2,3,4$), computed by diagonalizing the rate matrix are functions of k_js, the logarithm of which were assumed to have quadratic dependence on GdnHCl concentration according to the following equation,

$$k_j = k_j^\circ \exp\left[\frac{m^{+}_j [\text{GdnHCl}] + m^{-}_j [\text{GdnHCl}]^2}{RT}\right]$$

(1)
where k_j^o is the value of k_j in the absence of GdnHCl, and m^i is related to the change in surface area. The apparent kinetic rates (i.e., stopped-flow observables) were thus simulated with calculated λ_i values by adjusting the k_j^o and m^i_j values as input parameters. In this type of modeling, numeric instability is often encountered as a result of overdetermination of some parameters. Satisfactory fits were, however, obtained by repetitive adjustment of parameters.

3.4 Results

3.4.1 GdnHCl-induced equilibrium and kinetics of folding of alkaline ferrocyanochrome c

In order to set the rationale of submillisecond experiments, introduction to a set of basic results for ferrocyanochrome c held near pH 12.8 (alkaline ferrocyanochrome c) is necessary. Several spectroscopic signatures show that the structures of alkaline- and neutral-pH ferrocyanochrome c are largely similar (27). Further, TOF mass spectra and extensive ligand-binding experiments indicate no deamidation or aggregation at alkaline pH (data not shown).

Figure 3.4.1a shows GdnHCl-induced unfolding of the protein at pH 12.7(±0.1). Two-state analysis of the transition (24) yields a ΔG_D^o value of 3.5 kcal mol$^{-1}$, and the equilibrium m-value, m_g=1.2(±0.1) kcal mol$^{-1}$ M$^{-1}$. Figure 3.4.1b shows a stopped-flow trace for the refolding of alkaline ferrocyanochrome c in the presence of 0.65 M GdnHCl, pH 12.7. The fluorescence signal recorded for the unfolded protein (~5 M GdnHCl, pH 12.7) is also plotted. Clearly, a major fraction of the signal (~55%) is already recovered within the dead time of the stopped-flow, indicating the presence of a submillisecond relaxation process. This
burst loss of signal has a strong dependence on the concentration of GdnHCl in the refolding buffer; the lower the final denaturant concentration, the larger the recovery. The observed refolding time courses were, in general, fitted to 1-exponential. In some cases 2-exponentials were needed to improve the overall quality of fits (Figure 3.4.1b). The slow minor phase, the amplitude of which averages to ~10% of the observed signal, represents most likely the fraction of the oxidized protein, and was excluded from further analysis.

Figure 3.4.1c shows GdnHCl dependence of the logarithm of the observed refolding (unfolding) rate. Within error, the minimum of this chevron matches the midpoint of the unfolding transition (Figure 3.4.1a). Under strongly refolding conditions the rates deviate away from linearity. The nonlinearity of folding chevrons is generally taken as an indication of fast accumulation of folding intermediates (127; see Chapter 2). Denaturant dependence of folding rates for ferricyt c has been analyzed by invoking structural intermediates (52, 116), although this interpretation has been questioned (128). In the context of ferrocyan c, where interpretational ambiguities arising from heme misligation are removed, studies presented in Chapter 2 have shown that the nonlinear feature of the folding chevron is not due to accumulation of folding intermediates. The observed nonlinearity may be due to reasons that include some structural changes of the folding transition state along the reaction coordinate (69) and rapid interconversion of different configurations of the initial chain ensemble in the time-scale of their conversion to the native state (91). In this perspective, the GdnHCl dependence of the observed rates is fitted within the constraint of the two-state N ⇌ U model by assuming the following adhoc polynomial relationship between log $k_{f(u)}$ and GdnHCl (69).
where $k_{f(u)}^0$ are folding and unfolding rate constants in water. Figure 3.4.1d quantifies denaturant dependences of fluorescence signal amplitudes at times $t = 0$ and $t = \infty$ of folding and unfolding. The GdnHCl dependence of $t = \infty$ signals in both folding and unfolding kinetic traces, S_∞, reproduce the equilibrium unfolding transition (Figure 3.4.1a), and the thermodynamic parameters extracted from the two transitions are in excellent agreement. Of particular interest is the GdnHCl dependence of the fluorescence at $t = 0$ (S_0), normalized with reference to the fluorescence of the unfolded protein (Figure 3.4.1b). S_0 decreases as the GdnHCl concentration in the folding medium is lowered. The upper arrowhead in Figure 3.4.1d shows the unobservable fluorescence change associated with stopped-flow burst phase. The lower arrowhead indicates the fluorescence observed in the millisecond folding regime.

The obvious inquiry that follows is what happens in the submillisecond burst phase. A common analysis, when submillisecond events have not been resolved in real time, involves the assumption that GdnHCl dependence of the S_0 values is the reminiscence of a distinct sigmoidal transition of a refolding intermediate that is fully formed within the dead time of stopped-flow (ref 52, 129, for example). However, it is difficult to ascertain the exact functional dependence for GdnHCl vs S_0, given the practical limitation of obtaining relatively accurate burst phase data. The fit through the S_0 data in Figure 3.4.1d is an empirical one, and it does not appear to indicate a distinct denaturant-induced phase transition. One may still choose to interpret such a curve as a sigmoidal plot that is missing the pretransition, and thus the shape of the curve could simply reflect marginal stability of an intermediate. These difficulties make direct measurement of microsecond kinetics imperative.
Figure 3.4.1 (a) GdnHCl induced equilibrium unfolding transition of ferrocyt c at pH 12.7, 22°C. Iterated fit values for a two-state equilibrium are \(\Delta G^{\circ} \text{D} \approx 3.5 \text{ kcal mol}^{-1} \), and the equilibrium \(m \)-value, \(m_g \approx 1.2(\pm 0.1) \text{ kcal mol}^{-1} \text{ M}^{-1} \). (b) The initial 140 ms of a representative stopped-flow kinetic trace for refolding in the presence of 0.65 M GdnHCl showing the recovery of fluorescence signal, with respect to the fluorescence signal of the unfolded protein, during the burst kinetic phase. (c), GdnHCl dependence of rates for folding (■) and unfolding (▲) under the same conditions of pH and temperature. (d) Normalized signal values at time \(t = 0 \) and \(t \rightarrow \infty \) (\(S_0 \) and \(S_\infty \), respectively) in folding and unfolding kinetics. The burst relaxation, shown by the upper arrow, refers to any stopped-flow unobservable submillisecond process that causes a loss of spectroscopic signals. GdnHCl dependence of \(S_0 \) values in refolding (○) is empirically described by \(y = a - b \exp(-cx) \), where \(a \), \(b \), and \(c \) are constants. \(S_0 \) values for unfolding (▲) describes an extension of
the native-state baseline as a function of GdnHCl. The S_{α} signals recorded in refolding (O) and unfolding (●) experiments reproduce the equilibrium unfolding transition shown in panel (a).

3.4.2 Poising alkaline ferrocyt c for laser photolysis

In the present study microsecond measurements entailed finding conditions that would facilitate ultrafast initiation of refolding by laser photolysis. The following is how the system is poised for photolysis. Even though ferrocyt c in aqueous alkaline solution possesses structural integrity very similar to that at neutral pH, it readily denatures when CO is allowed to bind at pH>12. Notably, CO binding to alkaline ferrocyt c was described by Theorell and Åkesson some sixty years ago (130). By titrating the protein solution with CO at pH 12.8, it is found that only one CO binds per molecule of ferrocyt c with an equilibrium association constant, $K_a \approx 0.6 \times 10^6$ M$^{-1}$ (data not shown). Figure 3.4.2a shows fluorescence-monitored pH titration curves of ferrocyt c in the presence and absence of 1 mM CO. In the absence of CO, the protein remains folded even at pH>13. The pH-midpoint for unfolding in the presence of CO is ≈12.5. Figure 3.4.2b shows the same titration monitored by optical density at 550 nm. The results are same, except that the pH-midpoint of the CO-induced unfolding transition appears at ≈11.75. The shift may appear to indicate the accumulation of an equilibrium intermediate of ferrocyt c stabilized by CO (ref 53), but it is not clear how the binding of an extrinsic gaseous ligand can do so. Also, observation of distinct transition curves of two different properties for the denaturation does not necessarily provide a proof of the existence of an intermediate (76). In any case, the observations recorded in Figure 3.4.2 imply that photolysis of CO will drive the protein to refold near pH 12.8 (indicated by an arrowhead in Figure 3.4.2b), and since CO photodissociation occurs in the subpicosecond regime, the
folding course can be interrogated with virtually no time limitation (Figure 3.4.2c). Now, a comparison of Figures 3.4.1a and 3.4.2a, b shows that the CO photolysis method can be readily exploited to initiate ultrafast events in the folding of alkaline ferrocyt c in the full range of GdnHCl concentration.

Figure 3.4.2 The basis of ultrafast initiation of folding. (a) Alkaline pH-induced unfolding of ferrocyt c. When CO is allowed to bind to the protein, it is fully unfolded at pH>12.8 (♦), but in the absence of CO there is no unfolding (◊). (b) The same transition is monitored by heme absorption (●). In the absence of CO the protein does not unfold (○). Because heme optical absorption is very sensitive to heme saturation by ligands, the CO-induced unfolding transition appears to shift to lower pH, relative to that measured by fluorescence, by ~ 0.7 units. The arrow indicates that CO photolysis at a pH of ~12.8 initiates refolding. For convenience of kinetic measurements optical absorption spectroscopy was used to monitor post-photolysis events. (c) The
schematic of the basis of photolysis-induced ultrafast folding. The CO-liganded protein is unfolded where the polypeptide is random. A light pulse dissociates CO, and almost instantaneously initiates the folding reaction. Photolysis was carried out as a function of GdnHCl in order to derive a mechanistic description of folding (see also Figure 3.4.1).

3.4.3 Post-photolysis kinetics of carbonmonoxocytc and its fragment

CO photolysis was carried out in solutions of ferrocytc liganded with CO in the presence of different concentrations of GdnHCl (0-4 M range), all held at pH 12.9±0.1, 22°C. The microsecond relaxation processes thereafter are probed by absorption spectroscopy using a pulsed xenon lamp. Optical density is recorded at 421 nm, which is the λ_{max} in the difference spectrum of the folded protein in the absence of CO and the unfolded protein in the presence of CO. Figure 3.4.3a shows the observed changes in 421-nm optical density from 75 ns to 20 μs after CO photodissociation in the presence of 0.35 M GdnHCl. The data are best described by a 2-exponential fit with relaxation times of τ_1~300 ns and τ_2~2.5 μs. After ~50 μs, the optical absorption starts to decrease slowly in a single-exponential decay time, τ_3~700(±300) μs. This is best illustrated for photolysis of CO in the heme–CO complex of the nonfolding fragment, F1-65, of cyt c, where the rate is faster (Figure 3.4.3b; τ~200 μs).
Figure 3.4.3 (a) Microsecond relaxation processes observed by heme optical absorbance following photolysis of CO from carbonmonoxyct c dissolved in ~1.5 mM CAPS containing 0.35 M GdnHCl, pH 12.9, 22°C. The kinetics are described by two relaxations (residuals shown) of time constants ~0.32 and ~2.6 µs. (b) Bimolecular rebinding kinetics of CO illustrated for the F1-65 fragment of cyt c (τ~160 µs). To note is much slower CO rebinding time (~750 µs) for the intact protein (see Figure 3.4.4).

3.4.4 Kinetic events after photolysis of carbonmonoxyct c

Three phases are detected consistently under all experimental conditions in the 0-4 M range of GdnHCl. The first and the second phase (τ₁~300 ns and τ₂~2.5 µs) are due to transient binding of methionines (M80 and M65) and histidines (H26 and H33), respectively, to the heme iron of the photoproduct that has already relaxed. The symbol U’ will be used for the relaxed photoproduct or the incipient chain. Note that H18 persists as one of the axial ligands of Fe²⁺ under all conditions. There could be a slight difference in the rates of binding of M80 and M65, and similarly, for H26 and H33, because the binding rate depends on the number of amino acid residues that separate H18 and the binding residue. However, resolution of such a small difference in the relaxation profiles here is not expected. As such, τ₁ is assigned to transient binding of both methionines, and τ₂ to both histidines. States corresponding to bound methionines and histidines will be symbolized U’Fe²⁺−Met and U’Fe²⁺−His, respectively. These assignments are consistent with earlier studies on the rate of intrachain contact formation in unfolded ferrocyt c (26, 105,124-126,131). More specifically, Hagen et al. (126) have used histidine mutants of cytochrome c to validate the assignments. This study also examined some aspects of the assignments by photolysis of the CO
complex of one of the fragments of cyt \(c \) (F1-65) that excludes M80 (not shown). The slower third phase \((\tau_3 \sim 700 \, \mu\text{s})\) is due to bimolecular rebinding of CO to the \(\text{U'}_{\text{Fe}^{2+}} \) state. The rebinding reaction tends to obscure any relaxation process that may occur in a few hundreds of microseconds, because CO rebinding takes the \(\text{U'}_{\text{Fe}^{2+}} \) polypeptide back to the initial unfolded state, \(\text{U}_{\text{Fe}^{2+\text{-CO}}} \).

Altogether, there are four measurable relaxations in the folding course of ferrocyt \(c \): three are extracted from photolysis experiments, and one from stopped-flow traces. Figure 3.4.4a shows how these relaxation rates vary with GdnHCl. To achieve a comprehensive description of the rate processes for protein folding mechanism, the four measured relaxations \((\lambda_1\) to \(\lambda_4)\) can be considered within the framework of a phenomenological model shown in Scheme 1.

![Scheme I](image-url)
Various states and the processes indicated in the model are summarized briefly here. When photolyzed by a light pulse ($h\nu$), the unfolded CO-bound protein ($U_{Fe^{2+}-CO}$) goes to the high-energy unfolded state ($U_{Fe^{2+}}^*$). This happens nearly instantaneously. $U_{Fe^{2+}}^*$ has a vibrationally hot heme and an unrelaxed expanded polypeptide chain as observed in molecular dynamics simulation studies of cooling in laser-excited heme proteins, including cyt c (ref 132 for example). It then relaxes to a relatively unconstrained incipient state ($U_{Fe^{2+}}'$), the heme iron of which establishes transient contacts with methionines ($U_{Fe^{2+}-Met}$) and histidines ($U_{Fe^{2+}-His}$). The transient binding and dissociation events effectively produce a measurable distribution of three populations of the relaxed protein shown by the equilibria, $U_{Fe^{2+}-Met}' \Leftrightarrow U_{Fe^{2+}}' \Leftrightarrow U_{Fe^{2+}-His}'$. The equilibria suggest that the incipient chain contracts and expands constantly, and the box enclosure indicates that the rates of contraction and expansion are much faster than the rate of its folding to the native state (N) or of unfolding to the equilibrium unfolded state ($U_{Fe^{2+}-CO}$), the latter by rebinding with CO. The N state, of course, unfolds to $U_{Fe^{2+}-CO}$, because even native cyt c binds CO under the experimental conditions employed. Under thermal conditions, the back reaction from $U_{Fe^{2+}-CO}$ to N is negligible.

3.4.5 GdnHCl dependence of rates obtained from laser photolysis and stopped-flow folding experiments

To examine the GdnHCl dependences of the four measurable relaxations in the folding of ferrocyt c, only five states in the model ($U_{Fe^{2+}-Met}'$, $U_{Fe^{2+}}'$, $U_{Fe^{2+}-His}'$, N, and $U_{Fe^{2+}-CO}$) corresponding to the four measured eigenvalues (λ_1 to λ_4) are considered. The earliest phase of relaxation of the photoprodut (i.e.,
U^{*}\text{Fe}^{2+}\rightarrow\text{U}'^{*}\text{Fe}^{2+})$ is excluded, since the experiments presented here do not provide any direct information about this process. The eigenvalues were simulated by numerical calculation of microscopic rate constants, k_j ($j = +M, -M, +H, -H, +\text{CO}, -\text{CO}, \text{u}, \text{and f}$) as described under Materials and Methods. Figure 3.4.4a shows the GdnHCl dependences of λ_i extracted from one of the solutions of eigenvalue simulation, and Figure 3.4.4b shows the denaturant dependences of k_j that yield the solution.

The calculated values of $k_{+M}, k_{-M}, k_{+H},$ and k_{-H} are the rates of diffusion of the methionine (M80 and M65) and histidine (H26 and H33) side chains into and out of the heme iron site. As modeled earlier (105), binding of an intrapolypeptide ligand, say M, to the heme involves first diffusive motion of M at a rate k_v to produce a heme-ligand contact loop the two ends of which are provided by the side chains of H18, which persists as an axial ligand in the $\text{U}'^{*}\text{Fe}^{2+}$, and M. As shown below, the side chain of the contacting residue can now form a bond with the heme iron at a rate k_{+b} or diffuse away at a rate k_{-b}.

$$\begin{align*}
\text{heme} & \xrightarrow{k_v} \text{M} & \xrightarrow{k_{-b}} \text{M} \\
\text{M} & \xrightarrow{k_{+b}} \text{heme}
\end{align*}$$

The overall rate of binding, k_M, is given by

$$k_{+M} = k + \left[\frac{k_{+b}}{(k + k_{+b})} \right]$$

Here $k_{+b} \gg k_{-b}$, because the covalent binding, approximated by the geminate rate (tens of nanoseconds), occurs very rapidly compared to chain diffusion that takes microseconds. Hence, $k_{+M} \approx k_+$. Thus, the calculated values of ligand contact rates are actually the diffusion rates.
As Figure 3.4.4b shows, under the absolute refolding condition achieved in the absence of GdnHCl, the diffusion rate of methionines is $k^{o+M} \approx 2.6 \times 10^6 \text{ s}^{-1}$ ($\tau \approx 0.4 \mu\text{s}$). This is the fastest rate of chain contraction within the relaxed state, U^{Fe2+}. The relaxation rate of the polypeptide chain from the U^*_{Fe2+} to the U^{Fe2+} state must therefore be greater than or equal to k^{o+M}. Thus, the value of $\sim 0.4 \mu\text{s}$ presents an upper bound for the relaxation time of the immediate photoproduction. The rate of diffusive motions of histidine residues in the contact formation in aqueous solution, k^{o+H}, is $\sim 2.8 \times 10^5 \text{ s}^{-1}$ ($\tau \sim 4 \mu\text{s}$). Figure 3.4.4b also shows that the gradients of both k^{o+M} and k^{o+H} vs GdnHCl spaces are rather shallow in the subdenaturing limit (0-2 M GdnHCl). This observation has two implications. (i) Under strongly refolding conditions, the chain contraction events within the initial relaxed state are not associated with any substantial surface burial, implying little structure formation. (ii) The diffusive motions of the incipient polypeptide are only marginally affected under mild denaturing conditions. When strongly destabilizing conditions (>2 M GdnHCl) are employed, the chain contraction rates (k^{o+M} and k^{o+H}) become appreciably slower, due likely to larger number of denaturant molecules bound to the polypeptide, and therefore slower internal diffusion (125).

The rate calculations presented here use a bimolecular form for CO rebinding. Figure 3.4.4b shows that the extracted rate for rebinding in the absence of GdnHCl, $k^{o+CO} \approx 600 \text{ s}^{-1}$, and the rate exhibits, within error, no dependence on GdnHCl concentration, indicating that the species that rebinds CO is little structured. However, the nonfoldable fragment, F1-65, of cyt c rebinds CO about three-fold faster than the holoprotein does, indicating the influence of the full length polypeptide in the rebinding reaction.
Since photolysis was carried out under most strongly refolding conditions, the model must allow refolding of the U’ state to the native state. In these experiments, a refolding event that overlaps in time with the CO rebinding phase will be masked. No phase is, however, detected in the time window that straddles the chain contraction and CO rebinding phases. Further, as mentioned above, the photoproduct that rebinds CO is unstructured. These observations indicate the absence of refolding events of a few hundreds of microseconds. In order to achieve a complete description of the folding mechanism though, the model is simulated with millisecond stopped-flow rates, λ_4. As Figure 3.4.4b shows, eigenvalue calculations yield a refolding rate of $k^{\circ}_f \sim 380$ s$^{-1}$ ($\tau \sim 2.6$ ms) in the absence of GdnHCl. The corresponding unfolding rate is $k^{\circ}_u \sim 0.52$ s$^{-1}$ ($\tau \sim 1.9$ s).

Figure 3.4.4 (a) GdnHCl dependence of the four observable rates in the folding of alkaline ferrocyt c. As described in the text, λ_1 (\bullet) and λ_2 (\bullet) correspond to the rates for binding of methionines and histidines, respectively. λ_3 (Δ) is assigned to CO rebinding. λ_4 are stopped-flow measured millisecond rates (■, refolding and □, unfolding). The fits through the data are obtained from eigenvalue simulation of the phenomenological folding model described in the text. (b)
GdnHCl-dependences of the microscopic rate constants, k_j, that constitute the eigenvalues, λ_i, according to the folding model.

3.4.6 Temperature dependence of the fast relaxations rates (λ_1 and λ_2)

Considered now is the temperature dependence of λ_1 and λ_2. In a 2-state approximation, $\lambda_1 = k_{+M} + k_{-M}$. With the assumption that k_{-M} / k_{+M} is not strongly temperature dependent in the 295-315 K range (125), $\lambda_1 \sim c_1 k_{+M}$, and $\lambda_2 \sim c_2 k_{+H}$, where c_1 and c_2 are constants. The temperature dependences of λ_1 and λ_2 then provide estimates of the enthalpic barriers to chain contractions. Figure 3.4.5 shows these plots for 0.35 M GdnHCl (strongly refolding condition) and 4 M GdnHCl (strongly unfolding condition). Values of activation barriers, $E_a = -\frac{\partial}{\partial \left(\frac{1000}{T}\right)} (\ln \lambda)$, in the order of methionine- and histidine-associated contractions, are 11±3 and 26±7 kcal mol$^{-1}$ in the presence of 0.35 M GdnHCl, and 6.6±1.8 and 12±3.3 kcal mol$^{-1}$ in the presence of 4 M GdnHCl. Thus the enthalpic barrier increases nearly two-fold on going from strongly unfolding to strongly refolding conditions. On the other hand, the chain diffusion rates also increase under refolding conditions (Figure 3.4.4b). This implies a role of entropy in the intrachain contraction processes, and since the chain entropy decreases under strongly refolding conditions, it must be the solvent entropy that plays a positive role toward chain diffusion.

Figure 3.4.5 Temperature dependence of diffusion rates for the binding: k_{+M} (■) and k_{+H} (●) in 0.35 M GdnHCl (E_a=11±3 and 26±7 kcal mol$^{-1}$, respectively), and k_{-M} (■) and k_{-H} (●) in the presence of 4 M GdnHCl.
\((E_a=6.6\pm1.8 \text{ and } 12\pm3.3 \text{ kcal mol}^{-1}, \text{ respectively}). \)

3.5 Discussion

The ability to carry out photolysis-initiated refolding in the entire range of GdnHCl concentration distinguishes this work from similar earlier studies that employed conditions under which folding could be initiated only within a narrow range of denaturant concentration near the transition midpoint, where thermodynamic driving force for folding is not appreciable. The present results thus provide an opportunity to analyze the submillisecond folding events. The two general issues to address are: what happens during the earliest events in the folding, and whether a structural intermediate accumulates in the submillisecond course of folding.

The earliest event in the folding of many proteins is assumed to be a collapse or a compaction of the extended unfolded polypeptide in response to its placement under refolding conditions \((108-109, 111, 133-138)\), although there have been difficulties in the understanding of the collapse time, the configuration and structural attribute of the collapsed chain, and the role of the collapsed species in efficient folding. The collapse time may be as fast as 0.25-20 \(\mu s\), shown for apomyoglobin \((108-109)\), slow in the millisecond domain, exemplified by the folding of bovine \(\beta\)-lactoglobulin \((137)\), or much slower into several seconds, as documented for protein L \((138)\). The present photolysis results do not provide any clear information about the chain collapse in ferrocyt \(c\). On the other hand, the occurrence of this event cannot be ruled out. If one has to dwell on chain collapse, then, within the limit of the model, the \(U^*_{Fe^{2+}} \rightarrow U'_{Fe^{2+}}\) relaxation must be implicated. The upper limit of \(~0.4 \, \mu s\) projected for this process is then the
collapse time. Such a rapid submicrosecond collapse, where the radius of gyration presumably shifts toward a relatively compact state, is predicted by an analytical approach of homopolymer dynamics (139-140), although the predicted time slows down several-fold when hydrodynamic interactions are taken into account (140). However, given the empirical distribution of collapse time and rather complicated nature of heteropolymer collapse, there does not appear a simple approach to estimate the initial collapse time in protein folding.

What is the lifetime of the relaxed chain after photolysis? As the preceding Chapter concludes, the folding of ferrocyt
c is a two-state process, but with a finite lifetime of the condensed chain (5, 14, 25-28). Within the resolution of the present experiments, the results show no folding process in the microsecond bin (Figure 3.4.4), implying a lasting lifetime of this species during which the chain undergoes rapid interconversion between different chain configurations. In optical absorption-probed photolysis experiments, the sensitivity of the Soret band to heme ligation facilitates detection of three such configurational subpopulations. But it is clear that diffusive intrachain dynamics, not necessarily related to heme ligation, can generate a sizable set of chain configurations existing in equilibrium. In this picture, the initial photoproduct undergoes loop-mediated rapid contraction and expansion involving variable-length chain segments. The denaturant dependent redistribution of the set of chain configurations may also contribute to the rollover of stopped-flow rates (Figures 3.4.1b and 3.4.4a; see ref 91). For an ideal two-state protein, where only the unfolded and native states are considered, the initial chain condensation and transition-state barrier crossing may be so tightly coupled that both chain relaxation and native structure formation are recovered in the same kinetic step. In such a case, chain relaxation and rate-
limiting barrier crossings are concomitant (121, 138), allowing virtually no lifetime to the relaxed state.

The denaturant dependence of expansion and contraction dynamics of the incipient state, $U'_{\text{Fe}^{2+}}$ (Figure 3.4.4), provides some insight to an apparently contentious issue: what role the initial relaxation plays toward efficient folding? It has been suggested that the earliest chain relaxation (or collapse) is generally “specific”, meaning that the unfolded polypeptide condenses specifically to a compact structure bearing native-like intrachain contacts (58, 116, 142). In other words, the chain condenses in a deterministic manner to an early kinetic intermediate with native-like secondary structure. Implicit to the specific process is a drastic reduction in the conformational space to be searched for folding. On the other hand, the relaxation could be “nonspecific”, meaning that the chain merely condenses to a random configuration in response to its transfer from a strongly unfolding to a strongly refolding solvent. The nonspecifically condensed or relaxed state is just the unfolded state in a refolding environment (5, 14, 25-28, 70-71, 128, 136, 141). The post-photolysis dynamics of ferrocycl chain, modeled by $U'_{\text{Fe}^{2+}}-\text{Met} \rightleftharpoons U'_{\text{Fe}^{2+}} \rightleftharpoons U'_{\text{Fe}^{2+}}-\text{His}$ equilibria, are conserved throughout the GdnHCl range (Figure 3.4.4). More importantly, the pertinent rate coefficients show little variation in the range of GdnHCl concentrations corresponding to the folding arm of the rate-denaturant space, indicating that the initial chain relaxation is nonspecific. Two lines of earlier evidences also lend support to the suggestion that it cannot be specific. (i) In stopped flow denaturant dilution experiments, both non-folding fragments of the protein (F1-65 and F1-80) and the normally refoldable holoprotein produce quantitatively indistinguishable submillisecond signal at all concentrations of GdnHCl (70, 128). This is true for non-folding
holoprotein as well. Cyt c can be held under conditions that are persistently unfolding in the full range of GdnHCl or urea concentrations. In denaturant dilution experiments even the unfolded protein shows submillisecond signals, the denaturant dependence of which matches that for the normal refolding protein (28). (ii) A recent laser T-jump study has found similar dynamics in the fast reconfigurations of the foldable holocytochrome c and its nonfolding fragments (143). In all cases, cytochrome c and its fragments both respond to solvent changes through the same relaxation.

Nonspecific contraction is expected to be significantly faster than the specific collapse. Indeed, the U*Fe2+→U′Fe2+ relaxation is projected to ~0.4 µs, at least 100-fold faster than the value measured earlier for ferricytochrome c (116). Temperature dependent activation of chain condensation is often associated with specificity (116), but simple chain contraction also meets with enthalpic barrier (see ref 96).

In order to achieve forward folding the nonspecifically contracted chain must find a viable and rate-limiting transition state. The photolysis results in conjunction with stopped flow data show that the initial relaxation time of unfolded ferrocyt c is of the order ~0.4-1 µs, and the observed folding time is in milliseconds (Figure 3.4.4). These results indicate that it is the transition of the relaxed state, U′, to the native state, N, (U′→‡→N) that sets the folding time. For kinetically two-state proteins like ferrocyt c (5, 14, 25-28) and Csp B (144), where post-barrier kinetic intermediates do not accumulate, folding from the transition state to the native state (‡→N) is rapid and downhill biased. These considerations imply that almost the entire length of the observed folding time is the time needed for the U′ state to find a rate-limiting transition state. Although a general
mechanism of how the transition state is found is not clear, it is suggested that the incipient chain is engaged in an energetically uphill search (5, 27-28, 96,128, 141). The search continues until a relatively low-energy transition state conducive to forward folding is found. Because of the search-find approach, achieving the transition state is generally a time-consuming process. Experiments indicate an early transition state for cyt c (5, 28, 46) where at the most a third of the protein surface that is buried in the native state becomes buried (5). For the stopped-flow data presented in Figures 3.4.1 and 3.4.4, the surface burial in the transition state is much less than 30% of the buried area in the native state, implying that the folding transition state is more unfolded-like (see ref 27). Experiments also indicate that the rate-limiting barrier is energetically sizable (5), ~14 k_B T in the case of alkaline ferrocyt c (27). The transition state would thus appear modestly supported and stabilized by a few correctly formed native-like tertiary contacts or long-range interactions. It is therefore dynamic and less organized, consistent with the observation that the folding transition state is more unfolded-like. This classical picture, definitely in contrast with the theoretical paradigm (see 3, 145-148, and references therein), bears the essence of the topology search model (5, 128, 149-150), and is consistent with observations that folding rates and mechanisms often appear to be largely determined by the native-state topology or contact order (151-153).

Finally, it is necessary to comment on whether the spectroscopic probe used here is deficient for the detection of submillisecond structure formation. It may not appear so, because stopped-flow refolding chevrons of ferrocytochrome c measured by Soret heme absorbance, fluorescence, and far-UV CD are superimposable (26). Nevertheless, ultrafast CD studies of Kliger and coworkers
(97, 124), carried out in the presence of denaturing concentrations of GdnHCl, have reported on the submillisecond recovery of a minor fraction of the far-UV ellipticity value of native ferrocytochrome c. In view of this, it would be interesting to examine the post-photolysis events by time-resolved fluorescence and CD under the present experimental conditions.

3.6 Summary and conclusion

A simple experimental system of alkaline carbonmonoxycytochrome c appropriate for ultrafast protein folding studies under the absolute refolding condition has been described. In this initial study, the Soret heme probe indicates that the refolding of alkaline ferrocyt c is kinetically a two-state process with no apparent involvement of structural intermediates.

Upon initiation of refolding, the unfolded chain relaxes to an unstructured state of incipient chain (U→U'). Mediated by intrapolypeptide diffusion, the relaxed chain undergoes continuous expansion and contraction in microsecond times until a stable rate-limiting transition state is found (U'→‡). The transition barrier crossing, and therefore rate-limited folding, is a late event occurring at a time of ~3 milliseconds.