CHAPTER 1: REVIEW OF LITERATURE 1-24

CHAPTER 2: IN VIVO EVIDENCE: NM23-H2 BINDING TO GENE PROMOTERS 25-72

2.1 Introduction: DNA associated activities of human nucleoside diphosphate kinase-B (or NM23-H2/PuF) 25

2.2 Results: In vivo evidence of human nucleoside diphosphate kinase-B (or NM23-H2/PuF) binding to promoter region of c-MYC proto-oncogene 27

2.2.1 Over-expression of recombinant NM23-H2-myc fusion protein in human cancer cell lines 27

2.2.2 NM23-H2 binds to c-MYC promoters in vivo 28

2.2.3 NM23-H2 interaction to c-MYC promoter involves G-quadruplex DNA structure 30

2.2.4 Phosphotransferase and DNA binding activities of NM23-H2 are independent 34

2.2.5 In vitro biochemical characterization of different site directed mutants of NM23-H2 35

2.2.6 Phosphotransferase and in vivo DNA binding activities of NM23-H2 are independent 36

2.3 Results: In vivo evidence of human nucleoside diphosphate kinase-B (or NM23-H2/PuF) binding to promoter regions of CCR5 (chemokine receptor 5) gene 38

2.3.1 NM23-H2 binds to CCR5 promoter in vivo 38

2.4 Results: Chromatin-immunoprecipitation (ChIP) coupled DNA microarray (ChIP on chip) to find out genome wide binding sites of NM23-H2 39

2.4.1 Genome wide location analysis of NM23-H2 throughout human gene promoters 39

2.4.2 Gene Ontology classification of NM23-H2 target genes 53
2.5 Discussion: NM23-H2 binding to gene promoters in vivo

2.6 Materials and methods
2.6.1 Chemicals and reagents used
2.6.2 Bacterial growth media
2.6.3 Composition of buffers and reagents
2.6.4 Maintenance and propagation of human cell line
2.6.5 Monolayer culture
2.6.6 Cryo-preservation of human cells
2.6.7 Revival of the cryo-preserved human cells
2.6.8 Transfection of human cells
2.6.9 Chromatin immunoprecipitation (ChIP)
2.6.10 Polymerase chain reaction (PCR) of ChIP-DNA
2.6.11 Chromatin immunoprecipitation coupled DNA microarray (ChIP-chip)
2.6.12 Purification of recombinant proteins
2.6.13 Thin layer chromatography (TLC) assay of NM23-H2 or mutants

CHAPTER 3: INTERACTION OF NUCLEOSIDE DIPHOSPHATE KINASE WITH c-MYC PROMOTER: IN VITRO STUDY

3.1 Introduction: Nucleoside diphosphate kinase from Mycobacterium tuberculosis

3.2 Results: Interaction of nucleoside diphosphate kinase from Mycobacterium tuberculosis to c-tetraplex of c-MYC promoter
3.2.1 Sequence analysis of mNdK
3.2.2 Recombinant mNdK purification
3.2.3 mNdK binds to pyrimidine-rich strand within NHE IIII of c-MYC promoter
3.2.4 Determination of the equilibrium constant of mNdK binding to P1-oligonucleotide
3.2.5 mNdK cleaves cytosine-rich NHE sense strand in the c-MYC promoter
3.2.6 mNdK cleaves pyrimidine-rich strand within c-MYC NHE in an enzyme-catalyzed reaction
3.3 Discussion: DNA associated activities of nucleoside diphosphate kinase from *Mycobacterium tuberculosis* 90
3.4 Materials and methods
3.4.1 Storage and maintenance of bacterial strains 93
3.4.2 Growth of bacteria (*E. coli*) 94
3.4.3 Isolation of plasmid DNA (midi-prep) 94
3.4.4 Preparation of competent *E. coli* DH5α and BL21(DE3) cells for transformation 95
3.4.5 Transformation of competent *E. coli* 95
3.4.6 Expression and purification of recombinant mNdK 95
3.4.7 Thin layer chromatography (TLC) assay of mNdK 96
3.4.8 Plasmid cleavage assay 96
3.4.9 Agarose gel electrophoresis 97
3.4.10 SDS-PAGE 97
3.4.11 Circular dichroism of P1 in the presence of mNdK 97
3.4.12 Determination of equilibrium binding constants by fluorescence spectroscopy 98
3.4.13 DNA cleavage by gel electrophoresis 99
3.4.14 Determination of kinetic parameters of enzymatic DNA cleavage using FRET 99

CHAPTER 4: CONFORMATION DYNAMICS: C-TETRAPLEX STRUCTURE OF *c-MYC* NHE III

4.1 Introduction: C-tetraplex within the *c-MYC* NHE III 101
4.2 Results: Tetraplex DNA transitions within the human *c-MYC* promoter detected by multivariate curve resolution of spectroscopy data 104
4.2.1 Conformation changes in tetraplexes detected by multivariate analysis of CD spectra 104
4.2.2 Energy transfer because of tetraplex formation 106
4.2.3 FRET detects conformation dynamics of tetraplexes 107
4.3 Discussion: Tetraplex transition within the *c-MYC* promoter 110
4.4 Materials and methods 112
4.4.1 Circular dichroism (CD) spectroscopy 112
4.4.2 FRET experiments 112
4.4.3 Multivariate analysis of CD and FRET experiments 113

CHAPTER 5: SUMMARY AND CONCLUSIONS 116-121

BIBLIOGRAPHY 122-136

PUBLICATIONS