List of Figures

<table>
<thead>
<tr>
<th>Fig. No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>(a) LCST-Polymer blend phase diagram (b) UCST-Phase diagram with bimodal and spinodal curve (c) Gibbs free energy of mixing for binary mixtures</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>Variation of property with composition for a binary polymer blend</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>(a) Interface between immiscible polymers and (b) Interfacial density profile between immiscible polymers</td>
<td>12</td>
</tr>
<tr>
<td>1.4</td>
<td>Illustration of the role of polymer-polymer interaction energy on blends and hence their properties</td>
<td>14</td>
</tr>
<tr>
<td>1.5</td>
<td>Compatibiliser effect of a monolayer of a block copolymer B’-B” in the interface between the phases of two homopolymers P’ and P”</td>
<td>20</td>
</tr>
<tr>
<td>1.6</td>
<td>Model of a two stage compatibiliser effect</td>
<td>25</td>
</tr>
<tr>
<td>1.7</td>
<td>Schematic representation of the conformation of the graft polymers at the interface between nylon 6 and SAN phase</td>
<td>27</td>
</tr>
<tr>
<td>1.8</td>
<td>(a) Unmodified LDPE/HIPS blends showing coarse phase morphology (b) Effect of the HPB-b-PS diblock copolymer on the dispersion of HIPS in a PE matrix</td>
<td>29</td>
</tr>
<tr>
<td>1.9</td>
<td>Two mechanisms proposed for block copolymer suppression of coalescence (a) surface tension gradient (Marangoni force) and (b) steric repulsion-</td>
<td>35</td>
</tr>
<tr>
<td>1.10</td>
<td>Schematic representation of the blend interface between an immiscible blend in presence of a compatibiliser (diblock copolymer)</td>
<td>38</td>
</tr>
<tr>
<td>1.11</td>
<td>Influence of molecular weight of poly(styrene)-block-poly(isoprene)/(PS-b-PI) on the morphology of 50/50 weigh% PS/NR blend</td>
<td>42</td>
</tr>
<tr>
<td>1.12</td>
<td>Emulsification curves for EPM/nylon blends where EPM forms the dispersed phase</td>
<td>43</td>
</tr>
<tr>
<td>1.13</td>
<td>Speculative model illustrating the compatibilisaton efficiency under different mode of addition of the Copolymer</td>
<td>45</td>
</tr>
</tbody>
</table>
Physical models supposedly representing the conformation of copolymer at the interface of a heterogeneous polymer blend .. 47

Illustration of the probable alignment of block copolymers at an interface .. 48

Types of morphology in immiscible polymer blends, illustrated by SEM photographs of cryofractures ... 58

SEM micrograph of a fibrillar morphology ... 59

SEM micrograph of a core shell morphology ... 59

Transmission electron microscopy (TEM) microscope of an onion ring morphology ... 60

States of droplet deformation of Newtonian media in shear fields ... 62

Important mechanisms in morphology development during polymer blending of nylon/EPM rubber blends ... 63

Schematic representation showing morphology development mechanisms during polymer blending process .. 64

Average droplet diameter as a function of viscosity ratios of PP/PC blends ... 65

Schematic wave formation in deformed fibres and their breaking off into droplets .. 66

Examples of melt droplets under low deformation ... 67

Phase inversion mechanism ... 69

Phase inversion in binary polymer blends. The theoretical scheme is based on the Krieger-Dougherty equation .. 70

Idealised depiction of coalescence in polymer blends ... 75

Emulsification curve for polystyrene/ethylene-propylene rubber 90:10 blend compatibilised with SEBS triblock copolymer ... 76

Mechanism for suppression of coalescence in compatibilised blends ... 77

Morphology sketch of MA-g-PP compatibilised PA6/PP/organoclay nanocomposites ... 84

Proposed interaction between PA-g-PP and organoclay ... 85
Chapter 2

2.1 The urethane linkage ... 114
2.2 Polyaddition reaction for preparing Polyurethane 115
2.3 Basic structure of TPU ... 118
2.4 Structures of TDI and MDI ... 119
2.5 Structure of Poly tetra ethylene adipate (PTMA) 121
2.6 Structure of Poly (oxytetramethylene) glycols (PTMEG) 121
2.7 Chemical Structure of TPU ... 122
2.8 Structure of isotactic PP .. 125
2.9 Structure of syndiotactic PP ... 125
2.10 Schematic of the crystal structure of layered silicates (smectite clays) ... 126
2.11 Organic modifier (2MBHT) .. 128

Chapter 3

3.1 Scanning electron micrographs of 70/30 blends with addition of (a) 0 (b) 3 (c) 5 (d) 7 weight % MA-g-PP 146
3.2 Scanning electron micrographs of 70/30 blends with addition of (a) 0 (b) 3 (c) 5 (d) 7 weight % MA-g-PP 147
3.3 (a) Effect of compatibiliser concentration on the dispersed domain diameter of TPU/PP (70/30) blends 148
3.3 (b) Particle distribution curve of ester-TPU/PP (70/30) blends ... 148
3.3 (c) Particle distribution curve of ether-TPU/PP (70/30) blends ... 148
3.3 (d) SEM images of uncompatibilised TPU/PP blends with 30/70 and 50/50 ratios ... 149
3.4 Schematic of hydrogen bonding and chemical reaction among PP, MA-g-PP, nano clay and TPU 150
3.5 Chemical reaction between urethane linkage and maleic anhydride ... 151
3.6 Effect of compatibiliser concentration on K value 154
3.7 Schematic models illustrating the conformation of the copolymer at the interface (a) Fully extended model (b) Completely flat model (c) Intermediate model ... 155

3.8 Variation of particle size reduction as a function of volume % of compatibiliser .. 157

3.9 Effect on MA-g-PP on the χ values by Leibler’s theory 160

3.10 Ester based TPU blend TPU (nano)/PP/MA-g-PP (70/25/5) (a) 1% nano (b) 3% nano (c) 5% nano (Nano content in TPU) 161

3.11 Ether based TPU blend TPU (nano)/PP/MA-g-PP (70/25/5) (a) 1% nano (b) 3% nano (c) 5% nano (Nano content in TPU) 162

3.12 Nanoclay emulsification curve-TPU(nano)/PP/MA-g-PP (70-nano/25/5) .. 163

3.13 Effect of sequence of nanoclay addition in compatibilised TPU/PP blends (a) Ester-TPU/PP (nano)/MA-g-PP (b) Ester-TPU (nano)/PP/MA-g-PP .. 164

(c) Ether-TPU/PP (nano)/MA-g-PP (d) Ether-TPU (nano)/PP/MA-g-PP ... 164

3.14 Influence of nanoclay addition on ester-TPU based blends XRD pattern .. 165

3.15 Influence of nanoclay addition on ether-TPU based blends XRD pattern .. 166

3.16 Nanoclay intercalation and exfoliation position 168

3.17 TEM images of nanoclay intercalation and exfoliation 168

3.18 TEM images of ester- TPU (a) 3%, (b) 5% nanoclay loading 169

3.19 TEM images of ether- TPU (a) 3%, (b) 5% nanoclay loading 169

3.20 TEM images of ester –TPU based blends 170

3.21 TEM images of ether- TPU based blends 170

3.22 TEM images of sequence of nanoclay addition in ester-TPU based blends ... 171

3.23 TEM images of sequence of nanoclay addition in ether-TPU based blends ... 171

3.24 Neat ester-TPU FTIR .. 176

3.25 Neat ether-TPU FTIR .. 176
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.26</td>
<td>(a) Polypropylene FTIR (b) MA-g-PP FTIR</td>
</tr>
<tr>
<td>3.27</td>
<td>Chemical structure of ester-TPU and ether-TPU and MA-g-PP</td>
</tr>
<tr>
<td>3.28</td>
<td>Ester-TPU based compatibilised blends FTIR</td>
</tr>
<tr>
<td>3.29</td>
<td>Ether-TPU based compatibilised blends FTIR</td>
</tr>
<tr>
<td>3.30</td>
<td>Contact angle of ester-TPU based blends</td>
</tr>
<tr>
<td>3.31</td>
<td>Contact angle of ether-TPU based blends</td>
</tr>
<tr>
<td>3.32</td>
<td>Contact angle for neat polymers</td>
</tr>
</tbody>
</table>

Chapter 4

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>A typical stress-strain curve for semi crystalline Polymers</td>
</tr>
<tr>
<td>4.2</td>
<td>Stress-strain curves for uncompatibilised ester-TPU/PP blends</td>
</tr>
<tr>
<td>4.3</td>
<td>Stress-strain curves for uncompatibilised ether-TPU/PP blends</td>
</tr>
<tr>
<td>4.4</td>
<td>Theoretical model for uncompatibilised (a) ester (b) ether-TPU blends (Tensile strength)</td>
</tr>
<tr>
<td>4.5</td>
<td>Theoretical model for uncompatibilised (a) ester (b) ether-TPU blends (Tensile Modulus)</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of compatibiliser on stress-strain curves of ester-TPU blends</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of compatibiliser on stress-strain curves of ether-TPU blends</td>
</tr>
<tr>
<td>4.8</td>
<td>Stress-strain curves for ester-TPU blends (compatibilised)</td>
</tr>
<tr>
<td>4.9</td>
<td>Stress-strain curves for ether-TPU blends (compatibilised)</td>
</tr>
<tr>
<td>4.10</td>
<td>Variation of shore D hardness with wt% of PP in ester – TPU blends</td>
</tr>
<tr>
<td>4.11</td>
<td>Variation of shore D hardness with wt% of PP in ether – TPU blends</td>
</tr>
<tr>
<td>4.12</td>
<td>Flexural modulus for (a) ester-TPU blends (b) ether-TPU blends</td>
</tr>
<tr>
<td>4.13</td>
<td>Flexural modulus for compatibilised ester-TPU blends</td>
</tr>
<tr>
<td>4.14</td>
<td>Flexural modulus for compatibilised ether-TPU blends</td>
</tr>
</tbody>
</table>
Chapter 5

5.1 Neat polymers TGA analysis ... 229
5.2 Neat polymers DTG analysis ... 229
5.3 Effect of blend ratio on the thermograms of TPU/PP blends
 (a) Ester-TPU based thermograms (b) Ester-TPU based
derivative thermograms.. 233
5.4 Effect of blend ratio on the thermograms of TPU/PP blends
 (a) Ether-TPU based thermograms (b) Ether-TPU based
derivative thermograms.. 234
5.5 Effect of blend ratio on the thermograms of compatibilised
 TPU/PP blends
 (a) Ester-TPU based thermograms (b) Ester-TPU based
derivative thermograms.. 240
5.6 Effect of blend ratio on the thermograms of compatibilised
 TPU/PP blends
 (a) Ether-TPU based thermograms (b) Ether-TPU based
derivative thermograms.. 241
5.7 (a) Neat PP DSC thermogram .. 246
5.7 (b) Effect of blend ratio on the T_g of ester-TPU/PP blends 246
5.8 (a) Effect of blend ratio on PP crystallization behaviour of
 ester -TPU/PP blends ... 246
5.8 (b) Effect of blend ratio on the PPs (ΔH_f) Enthalpy of fusion
 in the heating curves of ester-TPU/PP blends 247
5.9 Effect of blend ratio on the TPUs T_g in the heating curves of
 ether-TPU/PP blends ... 247
5.10 (a) Effect of blend ratio on PP crystallization behaviour of
 ether -TPU/PP blends ... 248
5.10 (b) Effect of blend ratio on the PPs (ΔH_f) Enthalpy of fusion
 in the heating curves of ether-TPU/PP blends 248
5.11 Effect of nanoclay on compatibilised ester TPU blends T_g 252
5.12 Effect of compatibiliser and nanoclay on melting behaviour
 of ester 70/30 TPU/PP blends .. 253
5.13 Effect of compatibiliser and nanoclay on crystallization
 behaviour on ester 70/30 TPU/PP blends 253
5.14 Effect of compatibiliser and nanoclay on T_g of ether 70/30 TPU/PP blends ... 255
5.15 Effect of compatibiliser and nanoclay on melting behaviour of ether 70/30 TPU/PP blends .. 255
5.16 Effect of compatibiliser and nanoclay on crystallization behaviour on ether 70/30 TPU/PP blends .. 256
5.17 Neat polymers wide angle X-ray diffractograms 258
5.18 (a) Ester-TPU wide angle X-ray diffractograms 258
(b) Ether TPU wide angle X-ray diffractograms 259
5.19 Compatibilised ester- TPU/PP blends wide angle X-ray diffractograms .. 261
5.20 Compatibilised ether- TPU/PP blends wide angle X-ray diffractograms .. 261
5.21 Uncompatibilised-ester TPU (a) η^* vs ω, (b) G' vs ω, (c) G'' vs ω compatibilised-ester TPU (d) η^* vs ω, (e) G' vs ω, (f) G'' vs ω ... 263
5.22 Uncompatibilised-ether TPU (a) η^* vs ω, (b) G' vs ω, (c) G'' vs ω compatibilised-ether TPU (d) η^* vs ω, (e) G' vs ω, (f) G'' vs ω ... 264

Chapter 6

6.1 (a) Storage modulus (b) Log storage modulus of ester-TPU based uncompatibilised blends ... 277
6.1 (c) Loss modulus (d) $\tan\delta$ of ester- TPU based uncompatibilised blends ... 277
6.2 (a) Storage modulus (b) Log storage modulus of ether-TPU based uncompatibilised blends ... 278
6.2 (c) Loss modulus (d) $\tan\delta$ of ether-TPU based uncompatibilised blends ... 278
6.3 TPU based blends theoretical model of (a) Ester based blends (b) Ether based blends as a function of volume fraction of PP at 10°C TPU/PP (70/30) theoretical model of (c) Ester based blends (d) Ether based blends as a function of temperature .. 283
6.4 (a) Storage modulus (b) Log storage modulus of compatibilised ester-TPU based blends ... 287
Chapter 6

6.4 (c) Loss modulus (d) Tanδ of compatibilised ester-TPU based blends ... 287

6.5 (a) Storage modulus (b) Log storage modulus of compatibilised ether-TPU based blends 288

6.5 (c) Loss modulus (d) Tanδ of compatibilised ether-TPU based blends .. 289

6.6 Effect sequence of nanoclay addition on compatibilised TPU/PP blends ... 293

6.7 The Cole-Cole Plot of different TPU/PP blends at a frequency of 10Hz... 294

Chapter 8

8.1 Variation of volume resistivity of TPU/PP blends with TPU content at 30° C ... 320

8.2 Volume resistivity of ester-TPU, PP and their blends as a function of frequency at 30° C ... 321

8.3 Volume resistivity of ether-TPU, PP and their blends as a function of frequency at 30° C ... 321

8.4 Variation of dielectric constant of ester-TPU /PP blends with frequency at 30° C ... 323

8.5 Variation of dielectric constant of ether-TPU /PP blends with frequency at 30° C ... 323

8.6 Variation of dissipation factor of ester-TPU /PP blends with frequency at 30° C ... 326

8.7 Variation of loss factor of ester-TPU /PP blends with frequency at 30° C ... 327

8.8 Variation of dissipation factor of ether-TPU /PP blends with frequency at 30° C ... 327

8.9 Variation of loss factor of ether-TPU /PP blends with frequency at 30° C ... 328

8.10 Comparison of experimental values obtained for dielectric constant with theoretical predictions for ester – TPU based blends... 329

8.11 Comparison of experimental values obtained for dielectric constant with theoretical predictions for ether – TPU based blends. ... 330
8.12 Effect of compatibiliser concentration on the volume resistivity as a function of frequency at 30°C for ester based TPU based blends ... 331
8.13 Effect of compatibiliser concentration on the volume resistivity as a function of frequency at 30°C for ether based TPU based blends ... 331
8.14 Effect of nanoclay addition on the volume resistivity as a function of frequency at 30°C for compatibilized ester based TPU based blends ... 332
8.15 Effect of nanoclay addition on the volume resistivity as a function of frequency at 30°C for compatibilized ether based TPU based blends ... 332
8.16 Effect of compatibiliser concentration on the dielectric constant as a function of frequency at 30°C (a) Ester – TPU based (b) Ether – TPU based ... 333
8.17 Effect of nanoclay addition on the dielectric constant as a function of frequency at 30°C for compatibilized (a) Ester - TPU based (b) Ether-TPU based ... 333
8.18 Effect of compatibiliser concentration on the dissipation factor as a function of frequency at 30°C for ester-TPU based blends ... 334
8.19 Effect of compatibiliser concentration on the dissipation factor as a function of frequency at 30°C for ether-TPU based blends ... 334
8.20 Effect of nanoclay addition on the dissipation factor as a function of frequency at 30°C for compatibilized (a) Ester - TPU based (b) Ether-TPU based ... 335
8.21 Effect of nanoclay addition on the loss factor as a function of frequency at 30°C for compatibilised (a) Ester - TPU based (b) Ether-TPU based ... 335

Chapter 9
9.1 Sorption curves showing % uptake of water for polymers and their blends at room temperature. (a) Ester- TPU based (b) Ether-TPU based ... 343
9.2 A schematic model representing the diffusion process in (a) TPU/PP(100/0) (b) TPU/PP(70/30) (c) TPU/PP(50/50) (d) TPU/PP(30/70) (e) TPU/PP(0/100) ... 345
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>Effect of temperature on the diffusion characteristic of TPU/PP (70/30) (a) Ester-TPU based (b) Ether-TPU based</td>
<td>346</td>
</tr>
<tr>
<td>9.4</td>
<td>Effect of compatibilisation using MA-g-PP on the water sorption of TPU/PP (70/30) blends at RT (30°C) (a) Ester-TPU based (b) Ether-TPU based</td>
<td>348</td>
</tr>
<tr>
<td>9.5</td>
<td>Effect of compatibilisation using 5% of MA-g-PP with different sequence of nanoclay addition on the water sorption of TPU/PP (70/30) blends (a) Ester-TPU based blends (b) Ether-TPU based</td>
<td>350</td>
</tr>
<tr>
<td>9.6</td>
<td>Arrhenious plots of uncompatibilised blends at 30°C, 45°C and 60°C (a) Ester-TPU based (b) Ether-TPU based</td>
<td>357</td>
</tr>
<tr>
<td>9.7</td>
<td>Comparison of experimental diffusion results of TPU/PP and theoretical predictions</td>
<td>359</td>
</tr>
<tr>
<td>9.8</td>
<td>Comparison of experimental diffusion results of TPU(nano)/PP/MA-g-PP and theoretical predictions</td>
<td>359</td>
</tr>
</tbody>
</table>