Chapter 3

Fuzzy Ideals and Real Valuation Rings

3.1. Introduction

We have introduced the notion of valuation fuzzy ideals in chapter 2 and derived the conditions required for the existence of such ideals. We also established an order preserving correspondence between such ideals and valuations of a valuation ring. In this chapter we continue this investigation. Even though the existence of a valuation fuzzy ideal guarantees that the ring is a valuation ring, it may either be a real valuation ring or a non-real one. We therefore introduce another class of fuzzy ideals called \mathbb{R}-valuation fuzzy ideals and prove that an integral domain is a real valuation ring if and only if it possesses a \mathbb{R}-valuation fuzzy ideal. We also represent the value group of real valuation rings in terms of \mathbb{R}-valuation fuzzy ideals and discuss a method of constructing \mathbb{R}-valuation fuzzy ideals in a DVR.

3.2. Fuzzy ideals and real valuation rings

3.2.1. Theorem. Let V be an integral domain. Then V is a real valuation ring if and only if there exists a fuzzy ideal μ satisfying the following conditions.

(i) $\mu_x = \{0\}$

(ii) $\mu(x + y) = \mu(xy) + \mu(x) \mu(y) \ \forall \ x, y \in V$ and

(iii) $\mu(y) \leq \mu(x) \Rightarrow x/y \in V$, $\forall \ x, y \in V$

Proof. Let V be a real valuation ring. Then there exists a valuation ν on its quotient field K with value group $G \subseteq \mathbb{R}$. Define $\mu: V \rightarrow [0, 1]$ by $\mu(x) = 1 - 2^{-\nu(x)}$. Then from the properties of valuation, it can easily be verified that

$\mu(x + y) \geq \mu(x) \wedge \mu(y)$, $\mu(xy) \geq \mu(x) \vee \mu(y)$ and $\mu(-x) = \mu(x)$.

Therefore μ is a fuzzy ideal. In order to prove condition (ii), we have
\[\mu(x) + \mu(y) = (1 - 2^{-\upsilon(x)}) + (1 - 2^{-\upsilon(y)}) \quad \text{and} \]
\[\mu(xy) + \mu(x) \mu(y) = 1 - 2^{-\upsilon(xy)} + (1 - 2^{-\upsilon(x)})(1 - 2^{-\upsilon(y)}) \]
\[= 1 - 2^{-\upsilon(x)} 2^{-\upsilon(y)} + 1 - 2^{-\upsilon(x)} - 2^{-\upsilon(y)} + 2^{-\upsilon(x)} 2^{-\upsilon(y)} \]
\[= (1 - 2^{-\upsilon(x)} + (1 - 2^{-\upsilon(y)}) \]
\[\therefore \mu(x) + \mu(y) = \mu(xy) + \mu(x) \mu(y). \] This proves (ii)

Again,
\[\mu(0) = 1 - 2^{-\upsilon(0)} = 1 - 2^{-\infty} = 1. \]

Also,

\[x \in \mu_1 \Rightarrow \mu(x) = 1 \Rightarrow 1 - 2^{-\upsilon(x)} = 1 \Rightarrow \upsilon(x) = \infty \Rightarrow x = 0. \]
\[\therefore \mu_1 = \{ 0 \}. \] This proves (i).

Finally, for \(x, y \in V \),
\[\mu(y) \leq \mu(x) \Rightarrow \upsilon(y) \leq \upsilon(x) \Rightarrow \upsilon(x/y) = \upsilon(x) - \upsilon(y) \geq 0. \]
\[\therefore x/y \in V. \] This proves (iii).

Conversely suppose \(\exists \) a fuzzy ideal \(\mu \) on \(V \) satisfying condition (i) and (ii) and (iii). Define \(\upsilon(x) = - \log_2 (1-\mu(x)). \) We claim that \(\upsilon(x) = \infty \Leftrightarrow x = 0. \) We have from the definition of \(\upsilon \), \(\upsilon(0) = - \log_2 (1-\mu(0)). \) But, by condition (ii), \(\mu(0) + \mu(0) = \mu(0) + \mu(0) \). Therefore \(\mu(0) (\mu(0)-1) = 0. \) Since \(\mu(0) \neq 0 \), we have \(\mu(0) = 1. \) Hence \(\upsilon(0) = \infty. \) Also,
\[\upsilon(x) = \infty \Rightarrow - \log_2 (1 - \mu(x)) = \infty \Rightarrow 1 - \mu(x) = 0 \Rightarrow \mu(x) = 1. \]

By condition (i), \(x = 0. \) \(\therefore \upsilon(x) = \infty \Leftrightarrow x = 0. \) Again,
\[\upsilon(xy) = - \log_2 (1 - \mu(xy)) \]
\[= - \log_2 (1 - \mu(x) + \mu(y) - \mu(x) \mu(y)) \quad \text{(by condition (ii))} \]
\[= - \log_2 (1 - \mu(x) (1 - \mu(y))) = \upsilon(x) + \upsilon(y) \]
Chapter 3. Fuzzy Ideals and Real Valuation Rings

Also \(\nu(x + y) \geq \nu(x) \wedge \nu(y) \). Therefore \(\nu \) is a real valuation on the quotient field \(K \) and \(V \) is a subring of its valuation ring. In fact, the valuation ring of \(\nu \) is
\[
\{ \frac{x}{y} \in K : \mu(y) \leq \mu(x) \},
\]
But by condition (iii), this is equal to \(V \).

3.2.2. Definition. A fuzzy ideal \(\mu \) of an integral domain \(V \) is said to be an \(\mathbb{R} \)-valuation fuzzy ideal if \(\forall \ x, y \in V, \)
(i) \(\mu^* = \{0\} \), (ii) \(\mu(x) + \mu(y) = \mu(xy) + \mu(x) \mu(y) \) and
(iii) \(\mu(y) \leq \mu(x) \Rightarrow x/y \in V. \)

In terms of the \(\mathbb{R} \)-valuation fuzzy ideal, we can restate theorem 3.2.1 as follows.

3.2.3. Theorem. An integral domain \(V \) is a real valuation ring if and only if it possesses an \(\mathbb{R} \)-valuation fuzzy ideal.

We shall now compare \(\mathbb{R} \)-valuation fuzzy ideals with valuation fuzzy ideals defined in chapter 2.

3.2.4. Proposition. Every \(\mathbb{R} \)-valuation fuzzy ideal is a valuation fuzzy ideal.

Proof. Suppose \(\mu \) is an \(\mathbb{R} \)-valuation fuzzy ideal of an integral domain \(V \). Let \(x, y \in V \) and \(\mu(x) < \mu(y) \). Then by condition (iii), \(y/x \in V. \). \(\therefore y = r x, \) \(r \in V. \) We prove that \(r \) is a non-unit.

We have \(\mu(r x) = \mu(r) + \mu(x) - \mu(r) \). \(\mu(x) \) by condition (ii). \(\therefore \mu(y) = \mu(r) + \mu(x) - \mu(r) \). \(\mu(x) \), hence \(\mu(r) - \mu(r) \mu(x) = \mu(y) - \mu(x) > 0. \) That is \(\mu(r) (1 - \mu(x)) > 0. \) Since both the factors on the L.H.S are non-negative, we have \(\mu(r) > 0. \) We claim that \(x \in V \) is a unit \(\iff \mu(x) = 0. \) Note that
by condition (ii), we have \(\mu(1) + \mu(1) = \mu(1) + \mu(1) \). \(\mu(1) \). Hence
\(\mu(1) (1 - \mu(1)) = 0 \). But by condition (i), \(\mu(1) \neq 1 \). \(\therefore \mu(1) = 0 \). If \(x \) is a unit, then \(xy = 1 \) for some \(y \in V \). But then \(\mu(1) = \mu(xy) \geq \mu(x) \) or \(\mu(x) \leq \mu(1) \). It follows that \(\mu(x) = \mu(1) = 0 \). Conversely, if \(\mu(x) = 0 \) for \(x \in V \), then \(\mu(x) = \mu(1) \). By condition (iii), \(1/x \in V \). \(\therefore x \) is a unit. Since \(\mu(r) > 0 \), it follows that \(r \) is a non-unit.

Therefore \((y) \subset (x) \). Again, \(\mu(x) = \mu(y) \Rightarrow x/y \in V \) and \(y/x \in V \) by condition (iii). \(\therefore (y) = (x) \). Thus

\[\mu(x) < \mu(y) \Rightarrow (y) \subset (x) \text{ and } \mu(x) = \mu(y) \Rightarrow (y) = (x). \]

\(\therefore \mu \) is a valuation fuzzy ideal ■

It is not true that every valuation fuzzy ideal is an \(\mathbb{R} \)-valuation fuzzy ideal. The following example supports this statement.

3.2.5. Example. Let \(Z_{(2)} \) represents the ring consisting of all rational numbers of the form \(r/s \) where \(r, s \in Z \) and \(s \) is odd. Then \(Z_{(2)} \) is called the localization of the ring of integers \(Z \). Its ideal structure is

\[Z_{(2)} \supset (2/1) \supset (2^2/1) \supset (2^3/1) \supset \ldots \ldots \supset (0) \]

where \(S \) is the set of all odd integers. Define \(\mu : Z_{(2)} \rightarrow [0,1] \) by

\[\mu(x) = 0, \text{ if } x \in Z_{(2)} - (2/1) \]

\[= n/(n+1), \text{ if } x \in (2^n/1) - (2^{n+1}/1), n = 1, 2, \ldots \]

\[= 1, \text{ if } x = 0 \]

Then \(\mu \) is a valuation fuzzy ideal.

Let \(x = 4/3 \) and \(y = 12/5 \). Then \(x, y \in (2^2/1) - (2^3/1). \therefore \mu(x) = \mu(y) = 2/3 \).
\(xy = 48/15 = 16/5 \in (2^1/1) - (2^2/1). \) Now \(\mu(x) + \mu(y) = 4/3 = 60/45 \) and \(\mu(xy) + \mu(x) \mu(y) = 4/5 + 4/9 = 56/45 \). \(\therefore \mu(x) + \mu(y) \neq \mu(xy) + \mu(x) \mu(y) \). Hence \(\mu \) is not an \(\mathbb{R} \)-valuation fuzzy ideal ■
We have seen from theorem 3.2.3 that \mathbb{R}-valuation fuzzy ideals and real valuations are equivalent for an integral domain. We therefore denote the valuation equivalent to an \mathbb{R}-valuation fuzzy ideal μ by υ_μ and the \mathbb{R}-valuation fuzzy ideal equivalent to a valuation υ by μ_υ. We shall extend this idea to the context of quotient rings. For this, we need the following results.

3.2.6. Proposition [36]. If υ is a valuation on an integral domain V and P is a prime ideal of V then the quotient ring V/P is an integral domain and the map υ/P on V/P defined by

$$\upsilon/P (x+P) = \vee \{ \upsilon(x+z) : z \in P \}$$

is a valuation on V/P.

3.2.7. Proposition [28]. If μ is a fuzzy ideal on R and P is a prime ideal of R then the map μ/P defined on the quotient ring R/P by

$$(\mu/P)(x+P) = \vee \{ \mu(x+z) : z \in P \}$$

is a fuzzy ideal on R/P.

Let μ be an \mathbb{R}-valuation fuzzy ideal on an integral domain V and υ_μ be the equivalent valuation. If P is a prime ideal of V, then there are two quotient fuzzy ideals on V/P (i) μ/P, the fuzzy ideal of μ relative to P and (ii) $\mu_{(\upsilon_\mu)/P}$, the \mathbb{R}-valuation fuzzy ideal equivalent to the valuation υ_μ/P. In the following proposition, we prove that they are identical.

3.2.8. Proposition. Let μ be an \mathbb{R}-valuation fuzzy ideal on an integral domain V and υ_μ be the equivalent valuation. Let P be a prime ideal of V. Then $\mu_{(\upsilon_\mu)/P} = \mu/P$.

Proof. We have $\upsilon_\mu(x) = - \log_2(1-\mu(x))$. Also by definition

$$(\upsilon_\mu/P)(x+P) = \vee \{ \upsilon_\mu(x+z) : z \in P \}$$
Chapter 3. Fuzzy Ideals and Real Valuation Rings

\[\mu_{(\nu/P)}(x + P) = 1 - 2^{-\nu(\nu/P)(x + P)} \]

\[= 1 - 2^{-\nu(\nu(x+z); z \in P)} \]

\[= 1 - 2^{-\nu(-\log_2 (1-\mu(x+z)); z \in P)} \]

\[= 1 - 2^\nu(\log_2 (1-\mu(x+z)); z \in P) \]

Since the function \(f(x) = \log_2 x \) is strictly increasing,

\[\nu(\log_2 (1-\mu(x+z): z \in P) = \log_2 (\nu(1-\mu(x+z): z \in P)) \].

It follows that

\[\mu_{(\nu/P)}(x + P) = 1 - \nu(1-\mu(x+z): z \in P) \]

\[= \nu(\mu(x+z): z \in P) \]

\[= (\mu/P)(x+P) \]

\[\therefore \mu_{(\nu/P)} = \mu/P \quad \square \]

3.3. Value group from \(\mathbb{R} \)-valuation fuzzy ideals

3.3.1. Proposition. Let \(V \) be an integral domain having an \(\mathbb{R} \)-valuation fuzzy ideal \(\mu \). Then \(V \) is a real valuation ring with value group

\[P = \left\{ \log_2 \left[\frac{1-\mu(y)}{1-\mu(x)} \right] : x, y \in V; \ x \neq 0, y \neq 0 \right\}. \]

Proof. In theorem 3.2.1 we have proved that an integral domain \(V \) having an \(\mathbb{R} \)-valuation fuzzy ideal is a real valuation ring and we know that for a valuation ring \(V \), the value group is \(G = \mathbb{K}/U \) where \(\mathbb{K} \) is the multiplicative group of all non-zero elements of its quotient field \(K \) and \(U \) is the subgroup consisting of all non units of \(V \). Therefore we need only to prove that \(P \) is a subgroup of \(\mathbb{R} \) and that \(P \) is isomorphic to \(G \).
Chapter 3. Fuzzy Ideals and Real Valuation Rings

Since \(\mu \) is an \(\mathbb{R} \)-valuation fuzzy ideal, we have \(\mu^* = \{0\} \), \(\mu(x) + \mu(y) = \mu(xy) + \mu(x) \mu(y) \) and \(\mu(y) \leq \mu(x) \Rightarrow x/y \in V \) for all \(x, y \in V \). In order to prove that \(P \) is a subgroup of \(\mathbb{R} \), let \(X, Y \in P \) where

\[
X = \log_2 \left[\frac{1 - \mu(y)}{1 - \mu(x)} \right] \quad \text{and} \quad Y = \log_2 \left[\frac{1 - \mu(y')}{1 - \mu(x')} \right].
\]

Then

\[
X + Y = \log_2 \left[\frac{1 - \mu(y)}{1 - \mu(x)} \right] + \log_2 \left[\frac{1 - \mu(y')}{1 - \mu(x')} \right] = \log_2 \left[\frac{(1 - \mu(y))(1 - \mu(y'))}{(1 - \mu(x))(1 - \mu(x'))} \right]
\]

\[
= \log_2 \left[\frac{1 - (\mu(y) + \mu(y') - \mu(y)\mu(y'))}{1 - (\mu(x) + \mu(x') - \mu(x)\mu(x'))} \right] = \log_2 \left[\frac{1 - \mu(yy')}{1 - \mu(xx')} \right]
\]

\[\therefore X + Y \in P.\]

Again,

\[
- X = -\log_2 \left[\frac{1 - \mu(y)}{1 - \mu(x)} \right] = \log_2 \left[\frac{1 - \mu(x)}{1 - \mu(y)} \right] \in P.
\]

\[\therefore P \text{ is a subgroup of } \mathbb{R}.\]

In order to prove that \(G \) is isomorphic to \(P \), note that any element of \(G \) is of the form \((x/y)U \). Consider the map from \(G \) into \(P \) defined by

\[
(x/y)U \rightarrow \log_2 \left[\frac{1 - \mu(y)}{1 - \mu(x)} \right]
\]

The map is well defined. For, if \((x/y)U = (x'/y')U \), then \(xy'/yx' \in U \).

\[\therefore xy'/yx' = u \quad \text{where } u \text{ is a unit in } V. \therefore xy' = uyx', \quad \text{hence } \mu(xy') = \mu(yx').\]

\[\therefore \mu(x) + \mu(y') - \mu(x)\mu(y') = \mu(y) + \mu(x') - \mu(y)\mu(x').\]

Hence

\[1 - \mu(x) - \mu(y') + \mu(x)\mu(y') = 1 - \mu(y) - \mu(x') + \mu(y)\mu(x').\]

\[\therefore (1 - \mu(x))(1 - \mu(y')) = (1 - \mu(y))(1 - \mu(x')).\]
Chapter 3. Fuzzy Ideals and Real Valuation Rings

Now
\[
\frac{1-\mu(y)}{1-\mu(x)} = \frac{1-\mu(y')}{1-\mu(x')}. \therefore \log_2 \left(\frac{1-\mu(y)}{1-\mu(x)} \right) = \log_2 \left(\frac{1-\mu(y')}{1-\mu(x')} \right)
\]

Hence the map is well defined. Again,
\[
(x/y)U \cdot (x'/y')U = (xx'/yy')U
\]

\[
\Rightarrow \log_2 \left[\frac{1-\mu(yy')}{1-\mu(xx')} \right] = \log_2 \left[\frac{1-\mu(y) - \mu(y') + \mu(y)\mu(y')}{1-\mu(x) - \mu(x') + \mu(x)\mu(x')} \right]
\]

\[
= \log_2 \left(\frac{1-\mu(y)}{1-\mu(x)} \right) \left(\frac{1-\mu(y')}{1-\mu(x')} \right)
\]

\[
= \log_2 \left(\frac{1-\mu(y)}{1-\mu(x)} \right) + \log_2 \left(\frac{1-\mu(y')}{1-\mu(x')} \right)
\]

Therefore the map is a homomorphism. The map is 1-1, for,
\[
\log_2 \left(\frac{1-\mu(y)}{1-\mu(x)} \right) = \log_2 \left(\frac{1-\mu(y')}{1-\mu(x')} \right)
\]

\[
\Rightarrow 1-\mu(x') - \mu(y) + \mu(y)\mu(x') = 1-\mu(y') - \mu(x) + \mu(x)\mu(y')
\]

\[
\Rightarrow \mu(xy') = \mu(xy) \Rightarrow (xy') = (xy) \Rightarrow xy' = uxy', u \text{ is a unit in } V
\]

\[
\Rightarrow x'/y' = u x/y \Rightarrow (x'/y')U = (x/y)U.
\]

Also the map is on to. Hence G is isomorphic to P \(\square\)

3.3.2. Definition. Let V be an integral domain and \(\mu\) be an \(\mathbb{R}\)-valuation fuzzy ideal of V. Then the group
\[
P = \left\{ \log_2 \left(\frac{1-\mu(y)}{1-\mu(x)} \right) : x, y \in V; x \neq 0, y \neq 0 \right\}
\]

is called the **value group** of \(\mu\).
3.3.3. **Theorem** [36]. Let R be an integral domain and G an ordered abelian group. If there exists a map ν_0 from R into G satisfying the conditions of a valuation, then there exists a valuation ν on its quotient field K with value group G and valuation ring V such that $\nu(a) = \nu_0(a)$ for all $a \in R$ and R is a subring of V.

3.3.4. **Proposition.** Given an ordered subgroup $G \subseteq \mathbb{R}$, there exist an integral domain R and an \mathbb{R}-valuation fuzzy ideal μ on R having value group G.

Proof. Let G be a subgroup of \mathbb{R}. Let k be a field say $k = \mathbb{Z}_2$, the binary field. Let R be the vector space over k with basis $\{ x^a : a \in G, a \geq 0 \}$. Define multiplication of basis elements by $x^a \cdot x^b = x^{a+b}$ and extend this to a product operation on R by linearity. Then R is an integral domain, the unit element being $x^0 = 1$.

Define the map $\nu_0 : R \to G$ by
\[
\nu_0(0) = \infty \quad \text{and} \quad \nu_0(x^{a_1} + \ldots + x^{a_k}) = \min\{a_1, \ldots, a_k\}
\]

If $X = x^{a_1} + \ldots + x^{a_k}$ and $Y = x^{b_1} + \ldots + x^{b_k}$ are elements of R, then
\[
\nu_0(X + Y) \geq \nu_0(X) \land \nu_0(Y) \quad \text{and} \quad \nu_0(XY) = \nu_0(X) + \nu_0(Y).
\]

By theorem 3.3.3, the extension ν of ν_0 to the quotient field K of R defined by $\nu(X/Y) = \nu_0(X) - \nu_0(Y)$ is a valuation on K. The valuation ring being $V = \{ X/Y : X, Y \in R; \nu(X/Y) \geq 0 \}$. The fuzzy ideal μ of V defined by $\mu(X/Y) = 1 - 2^{-\nu(X/Y)}$ is an \mathbb{R}-valuation fuzzy ideal of V with value group G. In fact,
\[
\left\{ \log_2 \frac{1-\mu(X_i/Y_i)}{1-\mu(X_j/Y_j)} : 0 \neq X_i/Y_i \in V, \ 0 \neq X_j/Y_j \in V \right\}
\]
Chapter 3. Fuzzy Ideals and Real Valuation Rings

\[\{v(X_i/Y_i) - v(X_i/Y_i) : 0 \neq X_i/Y_i \in V, \ 0 \neq X_j/Y_j \in V\} = G \]

3.4. Construction of an \(\mathbb{R} \)-valuation fuzzy ideal in a discrete valuation ring

Since discrete valuation rings are real valuation rings, they always possesses \(\mathbb{R} \)-valuation fuzzy ideals. Instead of generating \(\mathbb{R} \)-valuation fuzzy ideals from valuations, we here develop a method for finding \(\mathbb{R} \)-valuation fuzzy ideals by assigning a value to its single irreducible element.

An \(\mathbb{R} \)-valuation fuzzy ideal \(\mu \) essentially satisfy \(\mu = \{0\} \) and \(\mu(x) + \mu(y) = \mu(xy) + \mu(x) \mu(y) \) for all \(x, y \). It follows from the proof of proposition 3.2.4 that \(\mu(x) = 0 \iff x \) is a unit. Again, if \(y \in V \),

\[\mu(0) + \mu(y) = \mu(0) + \mu(0) \cdot \mu(y). \therefore \mu(y) [\mu(0) - 1] = 0. \]

Since \(y \) is arbitrary, \(\mu(0) - 1 = 0 \), hence \(\mu(0) = 1 \).

The ideal structure of a DVR \(V \) is \(V \supset M = (a) \supset (a^2) \supset (a^3) \supset \ldots \supset (0) \) where ‘\(a \)’ is the single irreducible element of \(V \). Now,

\[\mu(a) + \mu(a) = \mu(a^2) + \mu(a). \mu(a). \therefore \mu(a^2) = \mu(a) (1-\mu(a)) + \mu(a). \]

Again,

\[\mu(a^2) + \mu(a) = \mu(a^3) + \mu(a^2). \mu(a). \therefore \mu(a^3) = \mu(a^2) (1-\mu(a)) + \mu(a). \]

Similarly,

\[\mu(a^4) = \mu(a^3) (1-\mu(a)) + \mu(a) \] and \[\mu(a^5) = \mu(a^4) (1-\mu(a)) + \mu(a). \]

In general,

\[\mu(a^k) = \mu(a^{k-1}) (1-\mu(a)) + \mu(a), k = 1,2,3,\ldots \]

Thus to get an \(\mathbb{R} \)-valuation fuzzy ideal, fix a membership value for ‘\(a \)’. It must be less than 1, for, otherwise \(\mu(x) = 1 \ \forall x \in M \) so that \(\mu_* \neq 0 \) which
Chapter 3. Fuzzy Ideals and Real Valuation Rings

is not possible. Then use the above recurrence formula (1) to find the values of \(\mu(a^2), \mu(a^3), \mu(a^4) \) etc. Now define \(\mu \) by

\[
\mu(x) = \begin{cases}
0, & \text{if } x \in V - (a) \\
\mu(a^k), & \text{if } x \in (a^k) - (a^{k+1}), \ k = 1, 2, \ldots \\
1, & \text{if } x = 0.
\end{cases}
\]

To prove that \(\mu \) is an \(\mathbb{R} \)-valuation fuzzy Ideal, note that from the definition of \(\mu \) itself, \(\mu_* = \{0\} \). In order to prove that \(\mu(x) + \mu(y) = \mu(xy) + \mu(x)\mu(y) \), we first prove the following.

(i) \(\mu(a^h) - \mu(a^k) = \mu(a^{h-k})(1 - \mu(a))^{k} \); \(h,k = 1, 2, 3, \ldots \), \(h \geq k \)

(ii) \(\mu(a^k) = \mu(a)[k - (\mu(a) + \mu(a^2) + \ldots + \mu(a^{k-1}))], \)

\[\quad k = 2, 3, 4, \ldots \]

(iii) \(\mu(a^k) = \mu(a)[1 + t + t^2 + \ldots + t^{k-1}], \) where \(t = 1 - \mu(a), \)

\[\quad k = 2, 3, 4, \ldots \]

From the recurrence formula (1),

\[
\mu(a^h) = \mu(a^{h-1}) (1 - \mu(a)) + \mu(a) \text{ and } \\
\mu(a^k) = \mu(a^{k-1}) (1 - \mu(a)) + \mu(a).
\]

Hence,

\[
\mu(a^h) - \mu(a^k) = (1 - \mu(a)) (\mu(a^{h-1}) - \mu(a^{k-1})) \\
= (1 - \mu(a))^2 (\mu(a^{h-2}) - \mu(a^{k-2})).
\]

Proceeding like this, we get

\[
\mu(a^h) - \mu(a^k) = (1 - \mu(a))^{k-1} (\mu(a^{h-k+1}) - \mu(a)) \\
= (1 - \mu(a))^{k-1} \mu(a^{h-k})(1 - \mu(a)), \text{ using (1)} \\
= (1 - \mu(a))^k \mu(a^{h-k}). \text{ This proves (i).}
\]

Again, from the recurrence relation (1),

\[
\mu(a) = 0 \ (1 - \mu(a)) + \mu(a) \text{ and } \\
\mu(a^{i+1}) = \mu(a) (1 - \mu(a)) + \mu(a), \ i = 1, 2, \ldots, k-1.
\]

Adding these \(k \) equations, we get
Chapter 3. Fuzzy Ideals and Real Valuation Rings

\[
\mu(a^k) = -\mu(a)[\mu(a) + \mu(a^2) + \ldots + \mu(a^{k-1})] + k\mu(a)
\]
\[
= \mu(a)[k - (\mu(a) + \mu(a^2) + \ldots + \mu(a^{k-1}))].
\]
This proves (ii).

Finally,
\[
\mu(a^2) = \mu(a)(1 - \mu(a)) + \mu(a)
\]
\[
= \mu(a)[1 + (1 - \mu(a))]
\]
\[
= \mu(a)[1 + t], \text{ where } t = 1 - \mu(a).
\]
Hence,
\[
\mu(a^3) = \mu(a^2)(1 - \mu(a)) + \mu(a)
\]
\[
= \mu(a)[1 + t]t + \mu(a)
\]
\[
= \mu(a)[1 + t + t^2].
\]
Therefore by induction,
\[
\mu(a^k) = \mu(a)[1 + t + t^2 + \ldots + t^{k-1}].
\]
This proves (iii).

Now if \(i \geq j\), we have
\[
\mu(a^i) + \mu(a^j) - \mu(a^{i+j}) = \mu(a)[i - \mu(a) + \ldots + \mu(a^{i+j-1})]
\]
\[
\mu(a)[j - \mu(a) + \ldots + \mu(a^{i+j-1})] - \mu(a)[(i + j) - \mu(a) + \ldots + \mu(a^{i+j-1})]
\]
(\text{using (iii)})
\[
= \mu(a)[\mu(a^i) + \ldots + \mu(a^{i+j-1})] - \mu(a) + \ldots + \mu(a^{i+j-1})]
\]
\[
= \mu(a)[\mu(a^i) + \mu(a^j) - \mu(a^i) - \mu(a^j) + \ldots + \mu(a^{i+j-1})]
\]
\[
= \mu(a)[\mu(a^i) + \mu(a^j)(1 - \mu(a)) + \ldots + \mu(a^j)(1 - \mu(a))]
\]
(\text{using (i)})
\[
= \mu(a)(\mu(a^i) + \mu(a^j) + \ldots + \mu(a^j) t^{i-1})
\]
\[
= \mu(a^i) \mu(a^j) + \mu(a^j) t^{i-1}
\]
\[
\mu(a^i) \mu(a^j) \text{ using (ii)}.
\]

Hence,
\[
\mu(a^i) + \mu(a^j) = \mu(a^{i+j}) + \mu(a^i) \mu(a^j)
\]
(2)

We now prove that \(\mu(x) + \mu(y) = \mu(xy) + \mu(x) \mu(y)\), for all \(x, y \in V\).
Chapter 3. Fuzzy Ideals and Real Valuation Rings

(i) If \(x, y \in V - (a) \), then \(x \) and \(y \) are units. \(\therefore xy \) is a unit and hence belongs to \(V - (a) \). By definition of \(\mu \), \(\mu(x) = \mu(y) = \mu(xy) = 0 \).
\[
\therefore \mu(x) + \mu(y) = \mu(xy) + \mu(x) \mu(y).
\]

(ii) If \(x, y \in (a^i) - (a^{i+1}) \) and \(i \geq 1 \), then \(x = ra^i \), \(y = sa^i \) where \(r \) and \(s \) are not multiples of \(a \).
\(\therefore xy = rs a^{2i} \in (a^{2i}) - (a^{2i+1}) \). Now
\[
\mu(x) = \mu(y) = \mu(a^i) \quad \text{and} \quad \mu(xy) = \mu(a^{2i}).
\]
By (2),
\[
\mu(x) + \mu(y) = \mu(a^i) + \mu(a^i) = \mu(a^{2i}) + \mu(a^i) \mu(a^i)
\]
\[
= \mu(xy) + \mu(x) \mu(y).
\]

(iii) If \(x \in V - (a) \) and \(y \in (a^i) - (a^{i+1}) \), \(j \geq 1 \), then \(x \) is a unit, hence \(xy \in (a^i) - (a^{i+1}) \). \(\therefore \mu(x) = 0 \) and \(\mu(y) = \mu(xy) = \mu(a^i) \).
\(\therefore \mu(x) + \mu(y) = \mu(xy) + \mu(x) \mu(y) \).

(iv) If \(x \in (a^i) - (a^{i+1}) \) and \(y \in (a^i) - (a^{i+1}) \) and \(i > j \), then \(x = ra^i \) and \(y = sa^j \) where \(r \) and \(s \) are not multiples of \(a \).
\(\therefore xy = rs a^{i+j} \in (a^{i+j}) - (a^{i+j-1}) \).

Now
\[
\mu(x) = \mu(a^i), \mu(y) = \mu(a^j) \quad \text{and} \quad \mu(xy) = \mu(a^{i+j}).
\]
By (2),
\[
\mu(x) + \mu(y) = \mu(a^i) + \mu(a^j) = \mu(a^{i+j}) + \mu(a^i) \mu(a^j)
\]
\[
= \mu(xy) + \mu(x) \mu(y).
\]

Finally, to prove that \(\mu(y) \leq \mu(x) \) \(\Rightarrow x/y \in V \), let \(x, y \in V \). If \(\mu(y) < \mu(x) \), then there exist \(i \) and \(j \) with \(i < j \) such that \(y \in (a^i) - (a^{i+1}) \) and \(x \in (a^j) - (a^{j+1}) \). Now \(y = ra^i \) and \(x = sa^j \) where \(r \) and \(s \) are not multiples of \(a \), hence units. \(\therefore x/y = (s/r) a^{i-j} \in V \). If \(\mu(y) = \mu(x) \), then \(x, y \in (a^i) - (a^{i+1}) \) for some \(i \). \(\therefore y = ra^i \) and \(x = sa^j \) where \(r \) and \(s \) are units, hence \(x/y = s/r \in V \). Thus \(\mu \) is an \(\mathbb{R} \)-valuation fuzzy ideal \(\blacksquare \).
3.4.1. Example. Consider the localization $\mathbb{Z}_{(2)}$ of the ring of integers \mathbb{Z}. Then $V = \mathbb{Z}_{(2)} \supset (2/1) \supset (2^2/1) \supset (2^3/1) \supset \ldots \supset (0)$ is a discrete valuation ring.

Take
\[
\mu(2/1) = 1/2, \quad \mu(2^2/1) = (1/2)(1 - 1/2) + 1/2 = 3/4,
\]
\[
\mu(2^3/1) = 3/4(1 - 1/2) + 1/2 = 7/8. \text{ etc.}
\]

Define μ by
\[
\mu(x) = 0, \text{ if } x \in \mathbb{Z}_{(2)} - (2/1)
\]
\[
= (2^i - 1)/2^i, \text{ if } x \in (2^i/1) - (2^{i+1}/1), i = 1, 2, \ldots \text{ and}
\]
\[
\mu(0) = 1. \text{ Then } \mu \text{ is an } \mathbb{R}\text{-valuation fuzzy ideal on } V.
\]

3.4.2. Remark. Arbitrarily fixing a value for $\mu(a)$ as in example 3.4.1, we can define infinitely many \mathbb{R}-valuation fuzzy ideals in a DVR. Equivalently, we can define infinitely many valuations.