List of Figures

Figure 1.1 Variation of melting point with particle diameter of gold

Figure 1.2 Surface Plasmon absorption of spherical nanoparticles and its size dependence

Figure 1.3 Schematic representations of the different types of magnetic nanostructures.

Figure 1.4 Qualitative illustration of the behaviour of the coercivity in ultra fine particle systems as the particle size changes.

Figure 1.5 Crystal structure of spinel ferrite.

Figure 1.6 Tetrahedral Co-ordination.

Figure 1.7 Octahedral Co-ordination.

Figure 1.8 Exchange interactions between ions in an inverse cubic ferrite.

Figure 1.9 Theoretical variation of reciprocal susceptibility with temperature for a ferromagnetic above Curie temperature.

Figure 2.1 Debye-Scherrer powder method.

Figure 2.2 Vibrating sample magnetometer.

Figure 3.1 X-ray diffraction pattern of Ni-ferrite nanoparticles prepared by (a) co-precipitation and (b) sol-gel technique, sintered at (i) 400°C (ii) 600°C and (iii) 800°C.

Figure 3.2 Hall-Williamson plots of Ni-ferrite synthesized by sol-gel technique and sintered at (a)400°C, (b)600°C and (c)800°C; prepared by co-precipitation and sintered at (d)400°C, (e)600°C and (c)800°C.

Figure 3.3 EDX spectra of (a) co-precipitation and (b) sol-gel derived samples.
Figure 3.4 HRTEM images of NiFe$_2$O$_4$ (a) co-precipitation and (b) sol-gel derived samples sintered at 400°C.

Figure 3.5 Grain sizes of co-precipitation derived nickel ferrite nanoparticles sintered at 400°C from AFM height mode.

Figure 3.6 Surface morphology of co-precipitation derived Ni-ferrite nanoparticles from AFM 3D mode.

Figure 3.7 SEM image of sol-gel derived Ni-ferrite nanoparticles sintered at 400°C.

Figure 3.8 FTIR spectra of Ni-ferrite samples prepared by (a) co-precipitation and (b) sol-gel techniques.

Figure 3.9 Room temperature hysteresis loops of Ni-ferrite samples synthesized by (a) co-precipitation and (b) sol-gel techniques; heat treated at (i) 400°C and (ii) 600°C.

Figure 3.10 Temperature dependence of DC resistivity of nickel ferrite prepared by (a) co-precipitation and (b) sol-gel technique.

Figure 3.11 Variation of dielectric constant with frequency for NiFe$_2$O$_4$, synthesized by (a) co-precipitation and (b) sol-gel techniques.

Figure 3.12 Temperature dependence of dielectric constant at selected frequencies for nickel ferrite prepared by (a) co-precipitation and (b) sol-gel technique.

Figure 3.13 Frequency dependence of dielectric loss (ε'') for (a) co-precipitation and (b) sol-gel derived NiFe$_2$O$_4$ samples.

Figure 3.14 Variation of AC conductivity with frequency for NiFe$_2$O$_4$ prepared by (a) co-precipitation and (b) sol-gel technique.

Figure 3.15 Variation of AC conductivity with temperature at selected frequencies for NiFe$_2$O$_4$. Prepared by (a) co-precipitation and (b) sol-gel techniques.

Figure 4.1 XRD pattern of NiTb$_x$Fe$_{2-x}$O$_4$ system.

Figure 4.2 Hall-Williamson plots of NiTb$_x$Fe$_{2-x}$O$_4$ samples.

Figure 4.3 TEM image of NiTb$_{0.2}$Fe$_{1.8}$O$_4$ nanoparticles.
Figure 4.4 SEM image of NiTb_{0.1}Fe_{1.9}O_{4} nanoparticles.

Figure 4.5 EDX spectra of (a) NiFe_{2}O_{4} and (b) NiTb_{0.1}Fe_{1.9}O_{4} samples.

Figure 4.6 FTIR spectra of NiTb_{x}Fe_{2-x}O_{4} samples.

Figure 4.7 Room temperature hysteresis curves of NiTb_{x}Fe_{2-x}O_{4} system.

Figure 4.8 Relation between DC resistivity (\rho) and absolute temperature (T) for NiTb_{x}Fe_{2-x}O_{4} samples.

Figure 4.9 Variation of real part of dielectric permittivity with frequency.

Figure 4.10 Relation between dielectric constant and the absolute temperature as a function of applied frequency.

Figure 4.11 Variation of dielectric constant with composition (x) at selected frequencies for NiTb_{x}Fe_{2-x}O_{4} system.

Figure 4.12 Variation of dielectric loss (\varepsilon”) with frequency.

Figure 4.13 Variation of dielectric loss (\varepsilon”) with composition (x) at selected frequencies.

Figure 4.14 Frequency dependence of AC conductivity (\sigma_{ac}).

Figure 4.15 Relation between AC conductivity and absolute temperature as a function of frequency.

Figure 4.16 Variation of AC conductivity (\sigma_{ac}) with composition (x) at selected frequencies.

Figure 5.1 XRD Patterns of NiGd_{x}Fe_{2-x}O_{4} ferrite system.

Figure 5.2 Hall-Williamson plots of gadolinium doped nickel ferrite samples.

Figure 5.3 Infrared spectra of NiGd_{x}Fe_{2-x}O_{4} ferrites.

Figure 5.4 Room temperature hysteresis curves of NiGd_{x}Fe_{2-x}O_{4} ferrite nanoparticles (a) x = 0, (b) x = 0.1, (c) x = 0.2 and (d) = 0.3.

Figure 5.5 Relation between dc resistivity and absolute temperature of NiGd_{x}Fe_{2-x}O_{4} system.
Figure 5.6 Variation of dielectric constant with frequency.

Figure 5.7 Variation of dielectric constant with temperature at selected frequencies for NiGd$_{0.1}$Fe$_{1.9}$O$_4$ sample.

Figure 5.8 Variation of dielectric constant with composition at different frequencies.

Figure 5.9 Dielectric loss (ε'') versus $\ln f$ graphs of NiGd$_x$Fe$_{2-x}$O$_4$ ferrite system.

Figure 5.10 Dielectric loss (ε'') versus composition graphs for NiGd$_x$Fe$_{2-x}$O$_4$ ferrite system.

Figure 5.11 Plots showing frequency dependence of ac conductivity of NiGd$_x$Fe$_{2-x}$O$_4$ ferrite system.

Figure 5.12 Temperature dependence of ac conductivity at selected frequencies.

Figure 5.13 Variation of ac conductivity with gadolinium content for NiGd$_x$Fe$_{2-x}$O$_4$ system.

Figure 6.1 X-ray diffraction pattern of NiGd$_x$Fe$_{2-x}$O$_4$ system.

Figure 6.2 Hall-Williamson plots for NiSm$_x$Fe$_{2-x}$O$_4$ system.

Figure 6.3 FTIR spectra of NiSm$_x$Fe$_{2-x}$O$_4$ system.

Figure 6.4 Hysteresis curves of NiSm$_x$Fe$_{2-x}$O$_4$ ferrite system.

Figure 6.5 Variation of DC resistivity with the reciprocal of absolute temperature.

Figure 6.6 Frequency dependence of dielectric constant for NiSm$_x$Fe$_{2-x}$O$_4$ ferrite system.

Figure 6.7 Variation of dielectric constant with temperature at selected frequencies for NiSm$_{0.1}$Fe$_{1.9}$O$_4$ nanoparticles.

Figure 6.8 Compositional dependence of dielectric constant.

Figure 6.9 Frequency dependence of dielectric loss (ε'').

Figure 6.10 Variation of dielectric loss (ε'') with composition for the NiSm$_x$Fe$_{2-x}$O$_4$ system.

Figure 6.11 Variation of AC conductivity with frequency for Ni-Sm ferrite system.
Figure 6.12 Temperature dependence of AC conductivity at selected frequencies.

Figure 7.1 XRD pattern of Ni$_{0.4}$Zn$_{0.6}$Tb$_x$Fe$_2$O$_4$ system.

Figure 7.2 Rietveld refined XRD pattern of Ni$_{0.4}$Zn$_{0.6}$Fe$_2$O$_4$ nanoparticles.

Figure 7.3 Hall-Williamson plots of the Ni-Zn-Tb ferrite system.

Figure 7.4 Transmission Electron Micrograph of the sample with x = 0.0.

Figure 7.5 IR spectra of Ni$_{0.4}$Zn$_{0.6}$Tb$_x$Fe$_{2-x}$O$_4$ ferrite; (a)x=0, (b)x= 0.05 and (c) x=0.1.

Figure 7.6 Room temperature hysteresis curves of Ni$_{0.4}$Zn$_{0.6}$Tb$_x$Fe$_{2-x}$O$_4$ system.

Figure 7.7 Variation of DC resistivity with temperature.

Figure 7.8 Frequency dependence of dielectric constant.

Figure 7.9 Variation of dielectric constant with temperature at selected frequencies for the sample with x = 0.1.

Figure 7.10 Frequency dependence of dielectric loss (ε'').

Figure 7.11 Variation of AC conductivity with frequency.

Figure 7.12 Temperature dependence of AC conductivity at selected frequencies.

Figure 8.1 X-ray diffraction pattern of (a) Ni$_{1-x}$Cd$_x$Fe$_2$O$_4$ and (b) Ni$_{0.9}$Cd$_{0.1}$Gd$_x$Fe$_{2-x}$O$_4$ ferrite systems.

Figure 8.2 TEM images of Ni$_{0.9}$Cd$_{0.1}$Gd$_x$Fe$_{2-x}$O$_4$ nanoparticles with (a) x=0.0 and (b) x=0.2.

Figure 8.3 Infrared spectra of (a) Ni$_{1-x}$Cd$_x$Fe$_2$O$_4$ and (b) Ni$_{0.9}$Cd$_{0.1}$Gd$_x$Fe$_{2-x}$O$_4$ ferrite systems.

Figure 8.4 Room temperature hysteresis loops of Ni$_{1-x}$Cd$_x$Fe$_2$O$_4$ ferrites, (a) x = 0.0, (b) x = 0.1 and (c) x = 0.3.

Figure 8.5 Room temperature hysteresis curves of Ni$_{0.9}$Cd$_{0.1}$Gd$_x$Fe$_{2-x}$O$_4$ nanoparticles.

Figure 8.6 Variation of dc resistivity with temperature for (a) Ni$_{1-x}$Cd$_x$Fe$_2$O$_4$ and (b) Ni$_{0.9}$Cd$_{0.1}$Gd$_x$Fe$_{2-x}$O$_4$ ferrite systems.
Figure 8.7 Frequency dependence of dielectric constant for (a) Ni$_{1-x}$Cd$_x$Fe$_2$O$_4$ and (b) Ni$_{0.9}$Cd$_{0.1}$Gd$_x$Fe$_{2-x}$O$_4$ ferrite systems.

Figure 8.8 Temperature dependence of dielectric constant at selected frequencies for the sample Ni$_{0.9}$Cd$_{0.1}$Fe$_2$O$_4$.

Figure 8.9 Variation of dielectric loss (ε'') with frequency of (a) Ni$_{1-x}$Cd$_x$Fe$_2$O$_4$ and (b) Ni$_{0.9}$Cd$_{0.1}$Gd$_x$Fe$_{2-x}$O$_4$ ferrite systems.

Figure 8.10 Frequency dependence of AC conductivity of (a) Ni$_{1-x}$Cd$_x$Fe$_2$O$_4$ and (b) Ni$_{0.9}$Cd$_{0.1}$Gd$_x$Fe$_{2-x}$O$_4$ ferrite systems.

Figure 8.11 Relation between AC conductivity and absolute temperature for Ni$_{0.9}$Cd$_{0.1}$Fe$_2$O$_4$ nanoparticles.