LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Role of Pharmacokinetics in the Development of New Drug</td>
<td>9</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Preparation of buffer pH 7.4</td>
<td>87</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Preparation of calibration curve of test items</td>
<td>88</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Standard concentration of NCE for PAMPA assays</td>
<td>93</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Sample preparation for metabolic stability</td>
<td>96</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Preparation of Test item in Human plasma</td>
<td>99</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>HPLC parameter for determination of Betulinic acid and short listed derivatives in Cytochrome P450 inhibition assays</td>
<td>101</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>List of standard drugs used with their known inhibitor and cytochrome P450 enzymes</td>
<td>102</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Assay conditions for Cytochrome P450 (CYP450) enzyme reactions</td>
<td>104</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Incubation and analysis conditions to determine inhibition of Cytochrome P450 (CYP450) enzymes</td>
<td>104</td>
</tr>
<tr>
<td>Table 4.10:</td>
<td>Working solutions preparation of 4012 and 4015</td>
<td>107</td>
</tr>
<tr>
<td>Table 4.11:</td>
<td>Preparation of calibration Standard/QC Standard in plasma</td>
<td>108</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Preparation of working solutions of DRF-4012 in diluent 2 (Method I)</td>
<td>112</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Preparation of Calibration Standards/QC Standards in Plasma (Method I)</td>
<td>113</td>
</tr>
<tr>
<td>Table 4.14</td>
<td>MS Conditions for analysis of DRF-4012 in different matrices of rat and mice</td>
<td>125</td>
</tr>
<tr>
<td>Table 4.15</td>
<td>SIR Acquisition Parameters</td>
<td>126</td>
</tr>
</tbody>
</table>
Table 4.16 Prepare the working solutions of DRF-4012 in diluent (Method II) 127
Table 4.17 Preparation of CS/QC Standards in different matrices (Method II) 128
Table 4.18 Pharmacokinetic studies design in wistar rat species *rattus norvegicus* 135
Table 4.19 Calculation of tumor volume in different athymic nude mice 143
Table 4.20 Injection volume calculation in athymic nude mice 145
Table 4.21 Biodistribution sample collection time point 145
Table 4.22 Tissue homogenate preparation of different organs at 0.5 h 146
Table 4.23 Summary of HPLC parameters for separation of metabolite in in-vivo study 149
Table 4.24 MS conditions for in vivo metabolism 150
Table 4.25 Related changes in masses of the tested compound 151
Table 5.1 Cytotoxicity of potent derivatives in a panel of sensitive human tumor cell lines (Primary screening data) 154
Table 5.2 Cancer cell specificity of potent derivatives of betulinic acid to the panel of sensitive human tumor cell lines (Secondary screening data) 155
Table 5.3 In vitro Cytotoxicity and HPLC Purity data of Betulinic acid derivatives 156
Table 5.4 Structural modifications in potent derivatives of betulinic acid 159
Table 5.5 Structure of betulinic acid and potent short listed derivatives 160
Table 5.6 Summary of predictive ADME characteristics of betulinic acid and derivatives 163
Table 5.7 HPLC method validation parameters for analysis of NCEs in transport buffer media for samples obtained from in vitro studies 166
Table 5.8 Solubility of standards compounds
Table 5.9 Solubility of betulinic acid and short-listed derivatives
Table 5.10 Log P values of betulinic acid and short-listed derivatives
Table 5.11 Log D values of betulinic acid and short-listed derivatives
Table 5.12 Permeability of standard compounds
Table 5.13 Permeability of short-listed betulinic acid derivatives
Table 5.14 Metabolic stability of standard drug Diclofenac
Table 5.15 Metabolic stability of betulinic acid and short-listed derivatives
Table 5.16 Plasma protein binding of standard compounds
Table 5.17 Percentage plasma protein binding of betulinic acid and short-listed derivatives
Table 5.18 Plasma stability of betulinic acid and short-listed derivatives
Table 5.19 Mean tumor volume calculation
Table 5.20 Mean T/C (%) calculation
Table 5.21 Tumor Growth Inhibition (TGI%)
Table 5.22 Summary of pharmacokinetic parameters (mean ± S.D., n = 6) of LEAD molecules 4012 and 4015 co solvent formulation after single intravenous dose of 10 mg/kg in wistar rats.
Table 5.23 Intraday slope, intercept and correlation values of the calibration curve as well as the mean ± S.D. (n = 5)
Table 5.24 Intra- and inter-day precision and accuracy of the method
Table 5.25 Intra- and inter-day precision and accuracy of the LLOQ
Table 5.26 Absolute recovery (extraction efficiency) of DRF-4012 in rat plasma (n = 6)
Table 5.27 Stability of DRF-4012 in rat plasma
Table 5.28 Dilution integrity quality control
Table 5.29 Assay linearity of the method. Values are Mean ± S.D., n = 3
Table 5.30 Intra- and Inter-day accuracy (%) and precision (% CV)
Table 5.31 Average absolute recoveries of DRF-4012 from different organs
Table 5.32 Matrix effect results for DRF-4012 in Plasma and Tumor
Table 5.33 Stability results for DRF-4012 in plasma and tumor
Table 5.34 Summary of noncompartmental pharmacokinetic parameters (mean ± S.D.) of DRF-4012 after single intravenous dose in male wistar rats up to 72 h (n = 6)
Table 5.35 Summary of noncompartmental pharmacokinetic parameters (mean ± S.D.) of DRF-4012 after single per oral dose in wistar rats post 24 h (n = 6)
Table 5.36 Absolute bioavailability determination of DRF-4012 after oral and intravenous administration to wistar rats
Table 5.37 Pharmacokinetic parameters of DRF-4012 in rats following intravenous (2 mg/kg) and oral (100 mg/kg) administration. All data are expressed as mean ± S.D. (n=6)
Table 5.38 Comparison of pharmacokinetic parameters (mean ± S.D.) after i.v. administration of DRF-4012 (5 mg/kg dose) to male and female wistar rats (n=6)
Table 5.39 Urinary excretion of DRF-4012 in rats following i.v. administration
Table 5.40 Fecal excretion of DRF-4012 in rats following i.v. administration
Table 5.41 Plasma concentration of DRF-4012 at different time point after i.v. administration of 30 mg/kg dose to tumor induced athymic nude mice
Table 5.42 Summary of pharmacokinetic parameters in human xenografts induced male athymic nude mice with nanoparticle formulation at 30 mg/kg i.v. dose after 72 h

Table 5.43 Tumor concentration of DRF-4012 at different time point after i.v. administration of 30 mg/kg dose to tumor induced athymic nude mice

Table 5.44 Pharmacokinetic parameters in tumor of male athymic nude mice after i.v. dose of 30 mg/kg dose of DRF-4012 nanoparticle formulation

Table 5.45 Biodistribution of DRF-4012 in different organs of tumor bearing nude mice at 0.5, 4 and 24 h after i.v. administration of 30 mg/kg DRF-4012 nanoparticle formulation. Data are presented as total content (µg) per g of tissues. (Mean ± S.D., n = 4 at each time point)

Table 5.46 Biodistribution of DRF-4012 in tumor bearing nude mice expressed as % Injected dose per organ/ tissue. (Mean ± S.D., n=4 at each time point)

Table 5.47 Elimination of DRF-4012 in tumor bearing and control mice. All data are expressed as mean ± S.D. derived from four different animals (n=4)

Table 5.48 Biodistribution of DRF-4012 in non-tumor bearing nude mice/or control group. Data are presented as total content (µg) per gram of tissues. (Mean ± S.D., n=4 at each time point)

Table 5.49 Biodistribution of DRF-4012 in control nude mice, expressed as % Injected dose per organ/ tissue. (Mean ± S.D., n=4 at each time point)

Table 5.50 Retention time and molecular mass (m/z) of DRF 4012 and its metabolites in rat extracted urine

Table 5.51 Retention time and molecular mass (m/z) of DRF 4012 and its metabolites in rat extracted feces