LIST OF FIGURES

CHAPTER I

Figure 1.1: Multi stage carcinogenesis.
Figure 1.2: Generation of MDA
Figure 1.3: Indirect and direct effects of ionizing radiation.
Figure 1.4: Effect of low and high LET radiation on DNA.
Figure 1.5: Types of chromosomal aberrations
Figure 1.6: Induction of micronucleus
Figure 1.7: Types of Free radicals
Figure 1.8. Generation of ‘OH radical
Figure 1.9. Reactions of ‘OH
Figure 1.10: Lipid peroxidation by ‘OH
Figure 1.11 : Thymine dimer
Figure 1.12 : Biochemical Impact of superoxide generation
Figure 1.13: Reduced and oxidized forms of glutathione
Figure 1.14: Antioxidant action of vitamin E and vitamin C
Figure 1.15: Types of carotenoids
Figure 1.16: Mechanism of action of amifostine
Figure 1.17. Phellinus rimosus
Figure 1.18. Antitumour polysaccharides from mushrooms
Figure 1.19: Structure of β-glucans

CHAPTER 2

Figure 2.1: Paper chromatography of protein bound polysaccharides of P.rimosus.
Figure 2.2: Thin layer chromatography of protein bound polysaccharides and aqueous extract of P.rimosus.
Figure 2.3: Amino acid analysis of protein bound polysaccharides and aqueous extract of P.rimosus using TLC.
CHAPTER 3

Fig. 3.1: Oxidation of ABTS to ABTS$^{+}$ radical

Figure 3.2: *In vitro* DPPH radical scavenging activity of the PPC-Pr Complex.

Figure 3.3: *In vitro* DPPH radical scavenging activity of the aqueous extract.

Figure 3.4: *In vitro* Ferric radical reducing power (FRAP) of the PPC-Pr Complex.

Figure 3.5: *In vitro* Ferric radical reducing power (FRAP) of the aqueous extract.

Figure 3.6: *In vitro* ABTS radical scavenging activity of the PPC-Pr Complex.

Figure 3.7: *In vitro* ABTS radical scavenging activity of the aqueous extract.

Figure 3.8: *In vitro* lipid peroxidation inhibiting activity of the PPC-Pr Complex.

Figure 3.9: *In vitro* lipid peroxidation inhibiting activity of the aqueous extract.

Figure 3.10: *In vitro* hydroxyl radical scavenging activity of the PPC-Pr Complex.

Figure 3.11: *In vitro* hydroxyl radical scavenging activity of the aqueous extract.

Figure 3.12: *In vitro* superoxide radical scavenging activity of the PPC-Pr Complex.

Figure 3.13: *In vitro* superoxide radical scavenging activity of the aqueous extract.

Figure 3.14: *In vitro* nitric oxide radical scavenging activity of the PPC-Pr Complex.

Figure 3.15: *In vitro* nitric oxide radical scavenging activity of the aqueous extract.

Figure 3.16: Effect of PPC-Pr Complex on AAPH induced TBARS formation in rat liver microsomes and mitochondria.

Figure 3.17: Effect of PPC-Pr Complex on AAPH induced LOOH formation in rat liver microsomes and mitochondria.

Figure 3.18: Effect of aqueous extract on AAPH induced TBARS formation in rat liver microsomes and mitochondria.

Figure 3.19: Effect of aqueous extract on AAPH induced LOOH formation in rat liver microsomes and mitochondria.
CHAPTER 4.A.
Fig. 4A.1. Effect of PPC-Pr complex at varying concentrations on radiation induced TBARS formation in mitochondria and microsomes.
Fig. 4A.2. Effect of PPC-Pr complex at varying concentrations on radiation induced lipid hydroperoxide (LOOH) formation in mitochondria and microsomes.
Fig. 4A.3. Effect of Aqueous extract at varying concentrations on radiation induced TBARS formation in mitochondria and microsome.
Fig. 4A.4. Effect of Aqueous extract at varying concentrations on radiation induced LOOH formation in mitochondria and microsome.
Figure 4A.5. Effect of PPC-Pr Complex and aqueous extract on gamma radiation induced DNA damage on human blood leukocytes, estimated by comet assay.
Figure 4A.6. Effect of PPC-Pr Complex and aqueous extract on gamma radiation induced DNA damage on human blood leukocytes, estimated by comet assay.
Figure 4A.7. Effect of PPC-Pr Complex on gamma radiation (25 Gy) induced plasmid PBR 322 DNA damage.
Figure 4A.8. Effect of aqueous extract on gamma radiation (25 Gy) induced plasmid PBR 322 DNA damage.

CHAPTER 4.B.I.
FIG 4B.1.1. Effect of administration of PPC-Pr Complex on total W.B.C count of 4 Gy γ irradiated animals.
FIG 4B.1.2. Effect of administration of PPC-Pr Complex on bone marrow cellularity of 4 Gy γ irradiated animals.
FIG 4B.1.3. Effect of administration of PPC-Pr Complex on blood GSH levels of 4 Gy γ irradiated animals.
FIG 4B.1.4. Effect of administration of PPC-Pr Complex on serum LPO levels of 4 Gy γ irradiated animals.
CHAPTER 4.B.2.
Figure 4B.2.1. Effect of administration of PPC-Pr on liver GSH levels of 4 Gy γ irradiated animals.
Figure 4B.2.2. Effect of administration of PPC-Pr on brain GSH levels of 4 Gy γ irradiated animals.
Figure 4B.2.3. Effect of administration of PPC-Pr on liver LPO levels of 4 Gy γ irradiated animals.
Figure 4B.2.4. Effect of administration of PPC-Pr on brain LPO levels of 4 Gy γ irradiated animals.
Figure 4B.2.5. Effect of Administration of PPC-Pr on Survival Rate of Animals Exposed to 9 Gy Gamma Radiations.
Figure 4B.2.6. Effect of Administration of PPC-Pr on ROS Accumulation in the Mitochondria of Irradiated Animals (4 Gy).

CHAPTER 4.B.3.
FIG 4B.3.1. Effect of administration of PPC-Pr on mucosal GSH levels of irradiated animals.
FIG 4B.3.2. Histopathological sections of intestinal mucosa 7 days after irradiation.

CHAPTER 5
Figure 5.1. Normal and micronucleated erythrocytes.
Figure 5.2. Effect of PPC-Pr on the induction of chromosomal aberrations in mouse bone marrow by whole body γ irradiation (4 Gy).

CHAPTER 6
Fig 6.1. Effect of subacute toxicity studies of PPC-Pr Complex on liver histopathology.
Fig 6.2. Effect of subacute toxicity studies of PPC-Pr Complex on kidney histopathology.