List of Figures

<table>
<thead>
<tr>
<th>No.</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The unit cell of AB₂O₄ spinel.</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Adjacent octants of AB₂O₄ spinels with octahedral and tetrahedral sites occupied by the A and B cations.</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>The sublattice of ferrites: (a) Octahedra sublattice (b) Tetrahedra sublattice.</td>
<td>1</td>
</tr>
<tr>
<td>1.4</td>
<td>Distances between cations in an ideal spinel lattice.</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Magnetic structure of a ferrimagnetic inverse spinel.</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>Metal-oxygen angle in spinel ferrites.</td>
<td>11</td>
</tr>
<tr>
<td>1.7</td>
<td>Configuration of ion pairs in spinel ferrites, with favourable distances and angles for effective magnetic interaction.</td>
<td>11</td>
</tr>
<tr>
<td>1.8</td>
<td>Schematic diagram of the Z-scan setup.</td>
<td>37</td>
</tr>
<tr>
<td>2.1</td>
<td>Thermogravimetric and differential thermal analysis of the gel.</td>
<td>55</td>
</tr>
<tr>
<td>2.2</td>
<td>X-ray diffraction patterns of NiFe₂O₄ synthesized with different molar weight ratios of PVA to total metal ions.</td>
<td>55</td>
</tr>
<tr>
<td>2.3</td>
<td>Variation of particle size of NiFe₂O₄ with respect to molar weight ratio of PVA to total metal ions.</td>
<td>56</td>
</tr>
<tr>
<td>2.4</td>
<td>X-ray diffraction patterns of NiFe₂O₄ prepared after calcination at (a) 350 °C and (b) 400 °C.</td>
<td>57</td>
</tr>
<tr>
<td>2.5</td>
<td>Representative HRTEM images of nickel ferrite nanoparticles (a) at low and (b) at high magnification, (c) SAED pattern and (d) histogram of the size distribution obtained from sampling of nanoparticles from (a).</td>
<td>58</td>
</tr>
<tr>
<td>2.6</td>
<td>STEM micrographs of NiFe₂O₄ nanoparticles (a) bright field image (b) high-angle annular dark field image.</td>
<td>59</td>
</tr>
</tbody>
</table>
2.7 EDS spectrum of NiFe₂O₄ nanoparticles.
2.8 Variation of magnetization with applied field at 300 K for nanocrystalline nickel ferrite.
2.9 Mossbauer spectrum of NiFe₂O₄ nanoparticles at room temperature.
2.10 Mossbauer spectra of NiFe₂O₄ nanoparticles at 5 K (a) without and (b) with 5 T magnetic field.
2.11 Schematic representation of hyperfine field canting with the external applied field in NiFe₂O₄ nanoparticles.
2.12 Neutron diffraction profile for NiFe₂O₄ nanoparticles (a) 20 K, (b) 150 K and (c) 300 K.
3.1 X-ray diffraction patterns of nickel zinc ferrite nanosystems (a) NZO5.1, (b) NZO5.2 and (c) NZO5.3.
3.2 EDS spectrum of NZO5.1 sample.
3.3 FTIR spectra of Ni⁰.⁵Zn⁰.⁵Fe²O₄ nanosystems.
3.4 SEM micrographs of Ni⁰.⁵Zn⁰.⁵Fe²O₄ nano (a) NZ05.1, (b) NZ05.2 and (c) NZ05.3.
3.5 (a) Variation of magnetization with applied field at 300 K for NZO5.1. (b) Magnified scale for the same data near zero applied field.
3.6 (a) Variation of magnetization with applied field at 300 K for NZO5.2. (b) Magnified scale for the same data near zero applied field.
3.7 (a) Variation of magnetization with applied field at 300 K for NZO5.3. (b) Magnified scale for the same data near zero applied field.
3.8 Magnetization versus temperature plots of NZO5.1 sample at applied fields, 10 Oe and 1000 Oe.
3.9 Magnetization versus temperature plots of NZ05.2 sample at applied fields, 10 Oe and 1000 Oe.

3.10 Magnetization versus temperature plots of NZ05.3 sample at applied fields, 10 Oe and 1000 Oe.

3.11 Mossbauer spectra of nickel zinc ferrite nanosystems (a) NZO5.1 (b) NZO5.2 and (c) NZO5.3 at room temperature.

3.12 Mossbauer spectra of NZO5.1 sample at 5 K (a) without and (b) with 5 T magnetic field.

3.13 Neutron diffraction profile for NZO5.1 nanoparticles at (a) 20 K (b) 50 K, (c) 100 K, (d) 150 K, (e) 200 K, (f) 250 K and (g) 300 K.

3.14 Plots of tetrahedral, octahedral and net magnetic moments of nickel zinc ferrite at different temperatures obtained from the Rietveld fitting.

4.1 X-ray diffraction pattern of ZnFe₂O₄ nanoparticles.

4.2 EDS spectrum of ZnFe₂O₄ nanoparticles.

4.3 Variation of magnetization with applied field at 300 K for ZnFe₂O₄ nanoparticles.

4.4 Neutron diffraction profile for ZnFe₂O₄ nanoparticles at (a) 20 K, (b) 50 K, (c) 100 K, (d) 150 K, (e) 200 K, (f) 250 K and (g) 300 K.

4.5 Plots of tetrahedral, octahedral and net magnetic moments of zinc ferrite at different temperatures as determined from Rietveld analysis.

4.6 Mossbauer spectrum of ZnFe₂O₄ at room temperature.

4.7 Mossbauer spectra of ZnFe₂O₄ nanoparticles at 5 K (a) without and (b) with an applied magnetic field of 5 T.

4.8 X-ray diffraction pattern of CoFe₂O₄ nanoparticles.
4.9 EDS spectrum of CoFe$_2$O$_4$ nanoparticles.
4.10 Variation of magnetization with applied field at 300 K for CoFe$_2$O$_4$ nanoparticles.
4.11 Mossbauer spectrum of CoFe$_2$O$_4$ nanoparticles at room temperature.
4.12 Mossbauer spectra of CoFe$_2$O$_4$ nanoparticles taken at (a) 5 K (b) 5 K with an applied magnetic field of 5 T.
4.13 X-ray diffraction pattern of Ni$_{0.5}$Co$_{0.5}$Fe$_2$O$_4$ nanoparticles.
4.14 EDS spectrum of Ni$_{0.5}$Co$_{0.5}$Fe$_2$O$_4$ nanoparticles.
4.15 Variation of magnetization with applied field at 300 K for Ni$_{0.5}$Co$_{0.5}$Fe$_2$O$_4$ nanoparticles.
4.16 Mossbauer spectrum of Ni$_{0.5}$Co$_{0.5}$Fe$_2$O$_4$ nanoparticles at room temperature.
4.17 Mossbauer spectra of Ni$_{0.5}$Co$_{0.5}$Fe$_2$O$_4$ nanoparticles at 5 K (a) without and (b) with an applied magnetic field of 5 T.
5.1 Optical absorption spectra of (a) NiFe$_2$O$_4$, (b) ZnFe$_2$O$_4$, (c) Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$, (d) Ni$_{0.5}$Co$_{0.5}$Fe$_2$O$_4$ and (e) CoFe$_2$O$_4$.
5.2 Nonlinear absorption in samples (a) CoFe$_2$O$_4$, (b) Ni$_{0.5}$Co$_{0.5}$Fe$_2$O$_4$ and (c) Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$. Insets show the corresponding open aperture Z-scan curves.
5.3 Nonlinear absorption in ZnFe$_2$O$_4$ sample for input laser energies of (a) 40 μJ, (b) 60 μJ, (c) 80 μJ and (d) 100 μJ. Insets show the corresponding open aperture Z-scan curves.
5.4 Nonlinear absorption in NiFe$_2$O$_4$ samples of three different particle sizes (a) 25 nm, (b) 20 nm and (c) 9 nm. Insets show the corresponding open aperture Z-scan curves.
5.5 Variation of two photon absorption coefficient of ZnFe$_2$O$_4$ with input pulse energy.