LIST OF FIGURES

1.1 Molecular structure of Tera Tert-Butyl 2,3 Naphthalocyanine (TTBNc) ...12
1.2 Molecular structure of Zinc Tera Tert-Butyl 2,3 Naphthalocyanine (ZnTTBNc) ..14
1.3 Molecular structure of Vanadyl Tera Tert-Butyl 2,3 Naphthalocyanine (VTTBNc) ..15
2.1 Schematic diagram of a vacuum coating unit ...42
2.2 Schematic diagram of vacuum chamber and DTM43
2.3 Schematic representation of the multiple beam interference method ..46
2.4 Photograph of the furnace and temperature controller47
2.5 Photograph of electrical conductivity experimental set up50
2.6 Longitudinal structure of thin film ..50
2.7 Photograph of CARY 5000 double beam mode spectrophotometer ..51
2.8 Schematic diagram for Siemens- D 5005 model X-ray Diffractometer ..52
2.9 Block diagram of JEOL-JSM- 6390 SEM instrument54
2.10 Block diagram for contact mode atomic force microscopy55
2.11 Photograph of Veeco 3-D Nanoscope with contact mode AFM ..56
3.3.1 Plot of hopping level conduction mechanism in organic semiconductors ..66
3.4.1.1 Plot of lnσ vs. 1000/T graph for TTBNc thin film having thickness (a) 150nm (b) 200nm and (c) 300nm68
3.4.1.2 Plot of lnσ vs. T^{1/4} for TTBNc thin film having thickness (a) 150nm (b) 200nm and (c) 300nm69
3.4.1.3 Plot of lnσ vs. 1000/T for TTBNc thin film of thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K71
3.4.1.4 Plot of lnσ vs. 1000/T for TTBNc thin film of thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K ..71
3.4.1.5 Plot of lnσ vs. T^{1/4} for TTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K........72
3.4.1.6 Plot of lnσ vs. T^{1/4} for TTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K ..73
3.4.1.7 Plot of lnσ vs. 1000/T for TTBNc thin film having thickness 300nm substrate heated at (a)323K (b) 373K and (c) 423K ..74
3.4.1.8 Plot of lnσ vs. T^{1/4} for TTBNc thin film having thickness 300nm substrate heated at (a)323K (b) 373K and (c) 423K75
3.4.1.9 Plot of lnσ vs. 1000/T for TTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad ... 76

3.4.1.10 Plot of lnσ vs. T\(^{-1/4}\) for TTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad ... 78

3.4.2.1 Plot of lnσ vs. 1000/T for ZnTTBNc thin film having thickness (a) 150nm (b) 200nm and (c) 300nm .. 79

3.4.2.2 Plot of lnσ vs. T\(^{-1/4}\) for ZnTTBNc thin film having thickness (a) 150nm (b) 200nm and (c) 300nm .. 80

3.4.2.3 Plot of lnσ vs. 1000/T for ZnTTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K ... 82

3.4.2.4 Plot of lnσ vs. 1000/T for ZnTTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K ... 83

3.4.2.5 Plot of lnσ vs. T\(^{-1/4}\) for ZnTTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K ... 84

3.4.2.6 Plot of lnσ vs. T\(^{-1/4}\) for ZnTTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K ... 84

3.4.2.7 Plot of lnσ vs. 1000/T for ZnTTBNc thin film having thickness 300nm substrate heated at (a) 323K (b) 373K and (c) 423K ... 85

3.4.2.8 Plot of lnσ vs. T\(^{-1/4}\) for ZnTTBNc thin film having thickness 300nm substrate heated at (a) 323K (b) 373K and (c) 423K ... 87

3.4.2.9 Plot of lnσ vs. 1000/T for ZnTTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad ... 88

3.4.2.10 Plot of lnσ vs. T\(^{-1/4}\) for ZnTTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad ... 89

3.4.3.1 Plot of lnσ vs. 1000/T for VTTBNc thin film having thickness (a) 150nm (b) 200nm and (c) 300nm .. 91

3.4.3.2 Plot of lnσ vs. T\(^{-1/4}\) for VTTBNc thin film having thickness (a) 150nm (b) 200nm and (c) 300nm .. 93

3.4.3.3 Plot of lnσ vs. 1000/T for VTTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K ... 95

3.4.3.4 Plot of lnσ vs. 1000/T for VTTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K ... 95

3.4.3.5 Plot of lnσ vs. T\(^{-1/4}\) for VTTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K ... 96
3.4.3.6 Plot of \(\ln \sigma \) vs. \(T^{1/4} \) for VTTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K ... 97

3.4.3.7 Plot of \(\ln \sigma \) vs. \(1000/T \) for VTTBNc thin film having thickness 300nm substrate heated at (a) 323K (b) 373K and (c) 423K ... 99

3.4.3.8 Plot of \(\ln \sigma \) vs. \(T^{1/4} \) for VTTBNc thin film having thickness 300nm substrate heated at (a) 323K (b) 373K and (c) 423K ... 100

3.4.3.9 Plot of \(\ln \sigma \) vs. \(1000/T \) for VTTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad ... 101

4.4.1.1 Plot of optical absorption spectrum for TTBNc thin film having thickness 300nm ... 117

4.4.1.2 Plot of optical transmission spectrum for TTBNc thin film having thickness 300nm ... 117

4.4.1.3 Plot of optical reflection spectrum for TTBNc thin film having thickness 300nm ... 117

4.4.1.4 Plot of absorption coefficient vs. photon energy for TTBNc thin film having thickness 300nm ... 117

4.4.1.5 Plot of \((\alpha)^2\) vs. photon energy for TTBNc thin film having thickness 300nm ... 117

4.4.1.6 Plot of \(\ln \alpha \) vs. photon energy for TTBNc thin film having thickness 300nm ... 117

4.4.1.7 Plot of refractive index \(n \), and extinction coefficient \(k \), vs. photon energy for TTBNc thin film having thickness 300nm ... 118

4.4.1.8 Plot of dielectric constants \(\varepsilon_1 \) and \(\varepsilon_2 \) vs. photon energy for TTBNc thin film having thickness 300nm ... 118

4.4.1.9 Plot of optical conductivity \(\sigma_1 \) and \(\sigma_2 \) vs. photon energy for TTBNc thin film having thickness 300nm ... 119

4.4.1.10 Plot of surface and volume energy loss vs. photon energy for TTBNc thin film having thickness 300nm ... 119

4.4.1.11 Plot of optical absorption spectra for TTBNc thin films having thickness 150nm and 200nm ... 120

4.4.1.12 Plot of optical transmission spectra for TTBNc thin films having thickness 150nm and 200nm ... 121

4.4.1.13 Plot of optical reflection spectra for TTBNc thin films having thickness 150nm and 200nm ... 121

4.4.1.14 Plot of \((\alpha)^2\) vs. photon energy for TTBNc thin film having thickness (a) 150nm and (b) 200nm ... 122

4.4.1.15 Plot of optical absorption spectra for TTBNc thin films having thickness 300nm air and vacuum annealed at 323K, 423K and 523K ... 124
4.4.1.16 Plot of optical transmission spectra for TTBNc thin films having thickness 300nm air and vacuum annealed at 323K, 423K and 523K ... 125
4.4.1.17 Plot of optical reflection spectra for TTBNc thin films having thickness 300nm air and vacuum annealed at 323K, 423K and 523K .. 126
4.4.1.18 Plot of \((\alpha)^2 \) vs. photon energy for TTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K.. 127
4.4.1.19 Plot of \((\alpha)^2 \) vs. photon energy for TTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K.. 127
4.4.1.20 Plot of optical absorption spectra of TTBNc thin films having thickness 300nm substrate heated at 323K, 373K and 423K .. 129
4.4.1.21 Plot of optical transmission spectra of TTBNc thin films having thickness 300nm substrate heated at 323K, 373K and 423K .. 129
4.4.1.22 Plot of optical reflection spectra of TTBNc thin films having thickness 300nm substrate heated at 323K, 373K and 423K .. 130
4.4.1.23 Plot of \((\alpha)^2 \) vs. photon energy for TTBNc thin film having thickness 300nm substrate heated at (a) 323K (b) 373K and (c) 423K .. 130
4.4.1.24 Plot of optical absorption spectra for TTBNc thin films having thickness 300nm gamma ray irradiated at 50K rad, 100K rad and 150K rad ... 132
4.4.1.25 Plot of optical transmission spectra for TTBNc thin films having thickness 300nm gamma ray irradiated at 50K rad, 100K rad and 150K rad ... 132
4.4.1.26 Plot of optical reflection spectra for TTBNc thin films having thickness 300nm gamma ray irradiated at 50K rad, 100K rad and 150K rad ... 133
4.4.1.27 Plot of \((\alpha)^2 \) vs. photon energy for TTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad ... 133
4.4.2.1 Plot of optical absorption spectrum for ZnTTBNc thin film having thickness 300nm .. 135
4.4.2.2 Plot of optical transmission spectrum for ZnTTBNc thin film having thickness 300nm .. 135
4.4.2.3 Plot of optical reflection spectrum for ZnTTBNc thin film having thickness 300nm .. 136
4.4.2.4 Plot of absorption coefficient vs. photon energy for ZnTTBNc thin film having thickness 300nm .. 136
4.4.2.5 Plot of \((\alpha)^2 \) vs. photon energy for ZnTTBNc thin film having thickness 300nm .. 136
4.4.2.6 Plot of $\ln \alpha$ vs. photon energy for ZnTTBNc thin film having thickness 300nm ... 136
4.4.2.7 Plot of refractive index, n and extinction coefficient, k vs. photon energy for ZnTTBNc thin film having thickness 300nm ... 137
4.4.2.8 Plot of dielectric constants ε_1 and ε_2 vs. photon energy for ZnTTBNc thin film having thickness 300nm ... 137
4.4.2.9 Plot of optical conductivity σ_1 and σ_2 vs. photon energy for ZnTTBNc thin film having thickness 300nm ... 137
4.4.2.10 Plot of surface and volume energy loss vs. photon energy for ZnTTBNc thin film having thickness 300nm ... 137
4.4.2.11 Plot of optical absorption spectra for ZnTTBNc thin films having thickness 150nm and 200nm ... 139
4.4.2.12 Plot of optical transmission spectra for ZnTTBNc thin films having thickness 150nm and 200nm ... 139
4.4.2.13 Plot of optical reflection spectra for ZnTTBNc thin films having thickness 150nm and 200nm ... 140
4.4.2.14 Plot of $(\alpha)^2$ vs. photon energy for ZnTTBNc thin film having thickness (a) 150nm and (b) 200nm ... 140
4.4.2.15 Plot of optical absorption spectra for ZnTTBNc thin films having thickness 300nm air and vacuum annealed at 323K, 423K and 523K ... 142
4.4.2.16 Plot of optical transmission spectra for ZnTTBNc thin films having thickness 300nm air and vacuum annealed at 323K, 423K and 523K ... 143
4.4.2.17 Plot of optical reflection spectra for ZnTTBNc thin films having thickness 300nm air and vacuum annealed at 323K, 423K and 523K ... 144
4.4.2.18 Plot of $(\alpha)^2$ vs. photon energy for ZnTTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K ... 145
4.4.2.19 Plot of $(\alpha)^2$ vs. photon energy for ZnTTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K ... 145
4.4.2.20 Plot of optical absorption spectra for ZnTTBNc thin films having thickness 300nm substrate heated at 323K, 373K and 423K ... 146
4.4.2.21 Plot of optical transmission spectra for ZnTTBNc thin films having thickness 300nm substrate heated at 323K, 373K and 423K ... 147
4.4.2.22 Plot of optical reflection spectra for ZnTTBNc thin films having thickness 300nm substrate heated at 323K, 373K and 423K ... 147
4.4.2.23 Plot of $(\alpha)^2$ vs. photon energy for ZnTTBNc thin film having thickness 300nm substrate heated at (a) 323K (b) 373K and (c) 423K ... 148
4.4.2.24 Plot of optical absorption spectra for ZnTBNc thin films having thickness 300nm gamma ray irradiated at 50K rad, 100K rad and 150K rad ... 149
4.4.2.25 Plot of optical transmission spectra for ZnTBNc thin films having thickness 300nm gamma ray irradiated at 50K rad, 100K rad and 150K rad ... 150
4.4.2.26 Plot of optical reflection spectra for ZnTBNc thin films having thickness 300nm gamma ray irradiated at 50K rad, 100K rad and 150K rad ... 150
4.4.2.27 Plot of $(\alpha)^2$ vs. photon energy for ZnTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad ... 151
4.4.3.1 Plot of optical absorption spectrum for VTTBNc thin film having thickness 300nm ... 152
4.4.3.2 Plot of optical transmission spectrum for VTTBNc thin film having thickness 300nm ... 152
4.4.3.3 Plot of optical reflection spectrum for VTTBNc thin film having thickness 300nm ... 152
4.4.3.4 Plot of absorption coefficient vs. photon energy for VTTBNc thin film having thickness 300nm ... 152
4.4.3.5 Plot of $(\alpha)^2$ vs. photon energy for VTTBNc thin film having thickness 300nm ... 153
4.4.3.6 Plot of $\ln \alpha$ vs. photon energy for VTTBNc thin film having thickness 300nm ... 153
4.4.3.7 Plot of refractive index, n and extinction coefficient, k vs. photon energy for VTTBNc thin film having thickness 300nm ... 153
4.4.3.8 Plot of dielectric constants ε_1 and ε_2 vs. photon energy for VTTBNc thin film having thickness 300nm ... 153
4.4.3.9 Plot of optical conductivity σ_1 and σ_2 vs. photon energy for VTTBNc thin film having thickness 300nm ... 153
4.4.3.10 Plot of surface and volume energy loss vs. photon energy for VTTBNc thin film having thickness 300nm ... 153
4.4.3.11 Plot of optical absorption spectra for VTTBNc thin films having thickness 150nm and 200nm ... 155
4.4.3.12 Plot of optical transmission spectra for VTTBNc thin films having thickness 150nm and 200nm ... 156
4.4.3.13 Plot of optical reflection spectra for VTTBNc thin films having thickness 150nm and 200nm ... 156
4.4.3.14 Plot of $(\alpha)^2$ vs. photon energy for VTTBNc thin film having thickness (a) 150nm and (b) 200nm ... 157
4.4.3.15 Plot of optical absorption spectra for VTTBNc thin films having thickness 300nm air and vacuum annealed at 323K, 423K and 523K ... 158
4.4.3.16 Plot of optical transmission spectra for VTTBNc thin films having thickness 300nm air and vacuum annealed at 323K, 423K and 523K ..159
4.4.3.17 Plot of optical reflection spectra for VTTBNc thin films having thickness 300nm air and vacuum annealed at 323K, 423K and 523K ..160
4.4.3.18 Plot of (α^2) vs. photon energy for VTTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K ..160
4.4.3.19 Plot of (α^2) vs. photon energy for VTTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K ..161
4.4.3.20 Plot of optical absorption spectra for VTTBNc thin films having thickness 300nm substrate heated at 323K, 373K and 423K ..162
4.4.3.21 Plot of optical transmission spectra for VTTBNc thin films having thickness 300nm substrate heated at 323K, 373K and 423K ..163
4.4.3.22 Plot of optical reflection spectra for VTTBNc thin films having thickness 300nm substrate heated at 323K, 373K and 423K ..163
4.4.3.23 Plot of (α^2) vs. photon energy for VTTBNc thin film having thickness 300nm substrate heated at (a) 323K (b) 373K and (c) 423K ..164
4.4.3.24 Plot of optical absorption spectra for VTTBNc thin films having thickness 300nm gamma ray irradiated at 50K rad, 100K rad and 150K rad ..165
4.4.3.25 Plot of optical transmission spectra for VTTBNc thin films having thickness 300nm gamma ray irradiated at 50K rad, 100K rad and 150K rad ..166
4.4.3.26 Plot of optical reflection spectra for VTTBNc thin films having thickness 300nm gamma ray irradiated at 50K rad, 100K rad and 150K rad ..166
4.4.3.27 Plot of (α^2) vs. photon energy for VTTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad ..167
5.4.1.1 X-ray diffractogram for TTBNc powder ..179
5.4.2.1 X-ray diffractogram for TTBNc thin film having thickness (a) 150nm (b) 200nm and (c) 300nm ...181
5.4.2.2 X-ray diffractogram for TTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K ..182
5.4.2.3 X-ray diffractogram for TTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K ..193
5.4.2.4 X-ray diffractogram for TTBNc thin film having thickness 300nm substrate heated at (a) 323K (b) 373K and (c) 423K............185
5.4.2.5 X-ray diffractogram for TTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad 187
5.4.3.1 X-ray diffractogram for ZnTTBNc powder .. 189
5.4.4.1 X-ray diffractogram for ZnTTBNc thin film having thickness (a) 150nm (b) 200nm and (c) 300nm 191
5.4.4.2 X-ray diffractogram for ZnTTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K .. 192
5.4.4.3 X-ray diffractogram for ZnTTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K .. 193
5.4.4.4 X-ray diffractogram for ZnTTBNc thin film having thickness 300nm substrate heated at (a) 323K (b) 373K and (c) 423K .. 195
5.4.4.5 X-ray diffractogram for ZnTTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad 197
5.4.5.1 X-ray diffractogram for VTTBNc powder .. 199
5.4.6.1 X-ray diffractogram for VTTBNc thin film having thickness (a) 150nm (b) 200nm and (c) 300nm 201
5.4.6.2 X-ray diffractogram for VTTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K .. 202
5.4.6.3 X-ray diffractogram for VTTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K .. 203
5.4.6.4 X-ray diffractogram for VTTBNc thin film having thickness 300nm substrate heated at (a) 323K (b) 373K and (c) 423K .. 205
5.4.6.5 X-ray diffractogram for VTTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad 207
6.4.1.1 SEM image for TTBNc powder .. 222
6.4.1.2 Two dimension AFM image for TTBNc powder 222
6.4.1.3 AFM section analysis for TTBNc powder 223
6.4.2.1 SEM image for TTBNc thin film having thickness (a) 150nm (b) 200nm and (c) 300nm .. 225
6.4.2.2 Two and three dimension AFM image for TTBNc thin film having thickness (a) 150nm (b) 200nm and (c) 300nm 226
6.4.2.3 Section analysis of two dimension AFM image for TTBNc thin film having thickness 300nm .. 226
6.4.2.4 SEM image for TTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K 228
6.4.2.5 SEM image for TTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K ..228

6.4.2.6 Two and three dimension AFM image for TTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K ...229

6.4.2.7 Two and three dimension AFM image for TTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K ...230

6.4.2.8 SEM image for TTBNc thin film having thickness 300nm substrate heated at (a) 323K (b) 373K and (c) 423K ...232

6.4.2.9 Two and three dimension AFM image for TTBNc thin film having thickness 300nm substrate heated at (a) 323K (b) 373K and (c) 423K ...233

6.4.2.10 SEM image for TTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad ..235

6.4.2.11 Two and three dimension AFM image for TTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad ..236

6.4.3.1 SEM image for ZnTTBNc powder ..238

6.4.3.2 Two dimension AFM image for ZnTTBNc powder ..238

6.4.3.3 AFM section analysis for ZnTTBNc powder ...238

6.4.4.1 SEM image of TTBNc thin film having thickness (a) 150nm (b) 200nm and (c) 300nm ...240

6.4.4.2 Two and three dimension AFM image for ZnTTBNc thin film having thickness (a) 150nm (b) 200nm and (c) 300nm ...241

6.4.4.3 Section analysis of two dimension AFM image for ZnTTBNc thin film having thickness 300nm ..241

6.4.4.4 SEM image for ZnTTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K ..243

6.4.4.5 SEM image for ZnTTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K ..243

6.4.4.6 Two and three dimension AFM image for ZnTTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K ..244

6.4.4.7 Two and three dimension AFM image for ZnTTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K ..245

6.4.4.8 SEM image for ZnTTBNc thin film substrate heated at (a) 323K (b) 373K and (c) 423K ..247

6.4.4.9 Two and three dimension AFM image for ZnTTBNc thin film having thickness 300nm substrate heated at (a) 323K (b) 373K and (c) 423K ..248
6.4.4.10 SEM image for ZnTTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad ... 249
6.4.4.11 Two and three dimension AFM image for ZnTTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad .. 250
6.4.5.1 SEM image for VTTBNc powder ... 252
6.4.5.2 Two dimension AFM image for VTTBNc powder 252
6.4.5.3 AFM section analysis for VTTBNc powder 252
6.4.6.1 SEM image for VTTBNc thin film having thickness (a) 150nm (b) 200nm and (c) 300nm ... 254
6.4.6.2 Two and three dimension AFM image for VTTBNc thin film having thickness (a) 150nm (b) 200nm and (c) 300nm 254
6.4.6.3 Section analysis of two dimension AFM image for VTTBNc thin film having thickness 300nm .. 255
6.4.6.4 SEM image for VTTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K 257
6.4.6.5 SEM image for VTTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K 257
6.4.6.6 Two and three dimension AFM image for VTTBNc thin film having thickness 300nm air annealed at (a) 323K (b) 423K and (c) 523K ... 258
6.4.6.7 Two and three dimension AFM image for VTTBNc thin film having thickness 300nm vacuum annealed at (a) 323K (b) 423K and (c) 523K ... 259
6.4.6.8 SEM image for VTTBNc thin film having thickness 300nm substrate heated at (a) 323K (b) 373K and (c) 423K 261
6.4.6.9 Two and three dimension AFM image for VTTBNc thin film having thickness 300nm substrate heated at (a) 323K (b) 373K and (c) 423K ... 262
6.4.6.10 SEM image for VTTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad ... 264
6.4.6.11 Two and three dimension AFM image for VTTBNc thin film having thickness 300nm gamma ray irradiated at (a) 50K rad (b) 100K rad and (c) 150K rad ... 265