REFERENCES


References


Deqvaire J. (1976), Improvement of the vanilla plant at Madagascar, Agric Tropicale et de Botanique Appliquee No.23 7/12, 139158 Translated from French by INSDOC.


Dewa Ngurah Suprapt and Khamdan Khalimi(2009), Efficacy of Plant Extract Formulations to Suppress Stem Rot Disease on Vanilla Seedlings *J. ISSAAS Vol. 15, No. 2:34-41*


Gaffney T. D., Lam S. T., Ligon J., Gates K., Frazelle A., Di Maio J., Hill S.,
of expression of antifungal factors by a Pseudomonas fluorescens biological

visualize the early events of symbiosis between Rhizobium meliloti and

Gaikwad, A. P. and C. A. Nimbalkar, (2003), Management of collar and root rot
(Rhizoctonia solani) of bell pepper with bioagent (Trichoderma spp.) and

Gailite, A, Ineta Samsone, and Gederts Ievins. (2005), Ethylene is involved in
Trichoderma-induced resistance of bean plants against Pseudomonas

Gamalero, E., Lingua, G., Tombolini, R., Avidano, L., Pivato, B. and Berta, G.
(2005). Colonization of tomato root seeding by Pseudomonas fluorescens
92 rkG5: Spatiotemporal dynamics, localization, organization, viability, and

Ganesan, P. and Gnanamanickam, S. S., (1987), Biological control of Sclerotium
rolfii Sacc. In peanut by inoculation with Pseudomonas fluorescens. Soil

Geels, F. P. and Schippers, B. (1983), Selection of Antagonistic Fluorescent
Pseudomonas spp. and Their Root Colonization and Persistence
Following Treatment of Seed Potatoes. Phytopathol. Z. 108: 193-206

Gesheva, V. (2002), Rhizosphere microflora of some citrus as a source of


References


Jackson, M. L. (1973), Soil chemical analysis. Prentice Hall, New Delhi, India.


Jayawijaya, L. F. (2003). Crude extract of Piper betle L. to control the stem rot disease on vanilla seedlings. Graduate Scientific Paper. Department of
Plant Protection, Faculty of Agriculture, Udayana University, Denpasar (in Indonesian language).


secondary metabolite 2,4-diacetylphloroglucinol. Molec. Plant-Microbe Interact. 5: 4-13.


Mauch, F., B. Mauch-Mani, T. Boller (1988), Antifungal hydrolases in pea tissue: II Inhibition of fungal growth by combinations of chitinase and two 1,3-glucanases. – Pl. Physiol. 87, 936–942.


References


Narawan, A. (1990), Pathogenicity test of *Fusarium oxysporum* in different crops. *Pemberituan Penelitian Tannaman Industri*, 16: 50-52


References


Phonkerd, N., Kanokmedhakul, S., Kanokmedhakul, K., Soytong, K., Prabpai, S., and Kongsearee, P. (2008), Bis-spiro-azaphilones and azaphilones from the fungi *Chaetomium cochliodes* VTh01 and *C. cochliodes* CTh05. Tetrahedron 64: 9,636-9,645.


Reginaldo S. Romeiro1, Roberto Lanna Filho1, Dirceu Macagnan2, Flávio A.O. Garcia1 & Harllen S.A. Silva3(2010) Evidence that the biocontrol agent *Bacillus cereus* synthesizes protein that can elicit increased resistance of tomato leaves to *Corynespora cassiicola* *Tropical Plant Pathology*, vol. 35, 1, 011-015


Yield, Head Quality and Root Rot Control In Broccoli Plants.


Shahida, K. Suurendra Gopal and Sally K.Mathew (2010), Phytophthora meedii causing Phytophthora rot in Vanilla and its compatibility with fungicides SAARC J Agri: 103-111


Sudharshan M. R., Radhika N. S. and Prakash K. V. (2003), Vanilla viral diseases in Karnataka; *Spice India* 16 28–29

Suneesh, K., (2004), Biodiversity of fluorescent pseudomonads in soils of moist deciduous forests of Western Ghats of Uttara Kannada district. *M.Sc. (Agri.) Thesis*, University of Agricultural Sciences, Dharwad


Talubnak, C. and Soytong, (2010), K Biological control of vanilla anthracnose using Emericella nidulans Journal of Agricultural Technology Vol.6(1): 47-55


Tsahouridou, P. C. and Thanassoulopoulos, C. C. (2002), Proliferation of Trichoderma koningii in the tomato rhizosphere and the suppression of
damping-off by *Sclerotium rolfsii*. Soil Biology and Biochemistry, 34:767-776

Tsao . P. H and Mu. L (1987), Phytophthora blight and root rot of vanilla in French Polynesia: Occurrence and causal species, Manila, Phillipines


Xianmei Yu, Chengxiang Ai Li Xin and Guangfang Zhou (2011), The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology 47, 138-145.


