CONTENTS

Abbreviations viii-x
List of Figures xi-xv
List of Figures xvi

CHAPTER 1

Introduction 1-25
1.1 Description of Onion (*Allium cepa* L.) 2
1.2 Scientific Classification of Onion (*Allium cepa* L.) 3
1.3 History of Onion (*Allium cepa* L.) 3
1.4 Chemical composition of Onion (*Allium cepa* L.) 4
1.4.1 Organosulphur Compounds 4
1.4.2 Flavonoids 8
1.4.3 Fructans and Fructooligosaccharides 11
1.4.4 Other Onion Bioactive Compounds 12
1.5 Free Radicals and Reactive Oxygen Species 12
1.5.1 Physiological Functions of ROS 13
1.5.2 Sources of ROS 14
1.5.3 ROS induced Oxidative Stress 16
1.5.4 Antioxidants and Natural Defense from ROS induced Damages 17
1.6 Erythrocytes or Red Blood Cells 19
1.6.1 Functions of Erythrocytes 19
1.6.2 Properties of Erythrocytes 21
1.6.2.1 Shape and Size of RBCs 21
1.6.2.2 Concentration of RBCs in the Blood 21
1.6.2.3 Quantity of Hemoglobin in the Cells 21
1.6.3 Life Span of RBCs 22
1.6.4 The Erythrocyte Membrane 22
CHAPTER 2

Review of Literature 26-67

2.1 Pharmacological Properties of Onion 26
 2.1.1 Antimicrobial Activity 26
 2.1.1.1 Antifungal Activity 27
 2.1.1.2 Antibacterial Activity 27
 2.1.1.3 Antiviral Activity 28
 2.1.2 Anti carcinogenic Activity 29
 2.1.3 Use of Onion and Cardiovascular Disease 31
 2.1.3.1 Hypolipidemic Effect 31
 2.1.3.2 Antithrombotic Effect or Antiplatelet Effect 32
 2.1.3.3 Hypoglycemic Effect or Antidiabetic Effect 32
 2.1.4 Other Health-promoting Effects of Onion 33
 2.1.4.1 Bone Health 33
 2.1.4.2 Morphine Withdrawal 34

2.2 Technological properties of Onions 35
 2.2.1 Antioxidant Activity of Onions 35
 2.2.2 Varietal Differences in Onions 36
 2.2.3 Antibrowning Properties of Onions 37

2.3 Absorption, Bioavailability and Metabolism of flavonoids in Onion 39

2.4 Prooxidant Properties of Quercetin in Onions 41

2.5 Effects of Oxidative Stress 43
 2.5.1 Oxidative Stress in Erythrocytes 43
 2.5.2 Oxidative Damage to Lipids 46
 2.5.3 LDL Oxidation 48
 2.5.4 Oxidative Damage to Proteins 50
 2.5.5 Oxidative Damage to Sialic Acids 51
 2.5.6 Oxidative Damage to DNA 53

2.6 Oxidative Stress and Enzyme Paraoxonase 1 Activity 54

2.7 Oxidative Stress and Enzyme Acetylcholinesterase Activity 57

2.8 Oxidative Stress and Plasma membrane Redox System 59

2.9 Antioxidant Defence Mechanisms in Oxidative Stress 61
2.9.1 Non Enzymatic Antioxidants 62
 2.9.1.1 Intracellular Reduced Glutathione 62
2.9.2 Enzymatic Antioxidants 64
 2.9.2.1 Superoxide Dismutase 64
 2.9.2.2 Catalase 65
 2.9.2.3 Glutathione Peroxidase and Glutathione Reductase 66

CHAPTER 3
Objectives of the study 68-72

CHAPTER 4
Materials and Methods 73-98

4.1 Materials 73
 4.1.1. List of chemicals 73
4.2 Routine Laboratory Procedures 76
 4.2.1 Washing of Glasswares 76
 4.2.2 Measurement of pH 76
 4.2.3 Instruments used for Proximate Composition Analysis 76
 4.2.4 Spectrophotometric Measurements 77
 4.2.5 Centrifugation 77
 4.2.6 Homogenate Preparation 77
 4.2.7 Collection and Identification of Plant Material 77
4.3 Preparative Procedures 77
 4.3.1 In vitro Experiment 77
 4.3.1.1 Preparation of Onion Extract 77
 4.3.1.2 Collection of Blood and Isolation of Packed RBCs 78
 4.3.1.3 Induction of Oxidative Stress In vitro 78
 4.3.2 In vivo Experimental Modelling 79
 4.3.2.1 Preparation of Onion Extract 79
 4.3.2.2 Wistar Rats: Animal Care and Acclimatization 79
 4.3.2.3 Induction of Oxidative Stress in Wistar Rats 80
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2.4 Administration of Onion Extracts and Flavonoids</td>
<td>80</td>
</tr>
<tr>
<td>(Catechin and Quercetin)</td>
<td></td>
</tr>
<tr>
<td>4.3.2.5 Animal Model and Study Protocol</td>
<td>81</td>
</tr>
<tr>
<td>4.3.2.6 Animal Sacrifice: Collection of Blood, Isolation of Plasma and RBCs</td>
<td>83</td>
</tr>
<tr>
<td>4.3.2.7 Collection and Homogenate Preparation of Liver and Brain Tissues</td>
<td>83</td>
</tr>
<tr>
<td>4.3.3 Isolation of Erythrocyte Ghosts</td>
<td>83</td>
</tr>
<tr>
<td>4.3.4 RBC Membrane Protein Contents Estimation</td>
<td>84</td>
</tr>
<tr>
<td>4.4 Experimental Procedures</td>
<td>84</td>
</tr>
<tr>
<td>4.4.1 Determination of Proximate Composition</td>
<td>84</td>
</tr>
<tr>
<td>4.4.1.1 Estimation of Moisture</td>
<td>84</td>
</tr>
<tr>
<td>4.4.1.2 Estimation of Protein</td>
<td>85</td>
</tr>
<tr>
<td>4.4.1.3 Estimation of Total Ash</td>
<td>86</td>
</tr>
<tr>
<td>4.4.1.4 Estimation of Fat</td>
<td>86</td>
</tr>
<tr>
<td>4.4.1.5 Estimation of Crude Fibre</td>
<td>87</td>
</tr>
<tr>
<td>4.4.1.6 Estimation of Carbohydrate Content</td>
<td>88</td>
</tr>
<tr>
<td>4.4.2 Determination of Total Phenolic Content</td>
<td>88</td>
</tr>
<tr>
<td>4.4.3 Determination of Total Flavonoid Content</td>
<td>88</td>
</tr>
<tr>
<td>4.4.4 Determination of Antioxidant Activity In vitro</td>
<td>89</td>
</tr>
<tr>
<td>4.4.4.1 Ferric Reducing Antioxidant Power</td>
<td>89</td>
</tr>
<tr>
<td>4.4.4.2 Free Radical Scavenging Activity</td>
<td>89</td>
</tr>
<tr>
<td>4.4.4.3 Scavenging of Hydrogen Peroxide</td>
<td>90</td>
</tr>
<tr>
<td>4.4.4.4 Reducing Capacity</td>
<td>90</td>
</tr>
<tr>
<td>4.4.4.5 Ferrous ion (Fe^{2+}) Chelating Activity</td>
<td>90</td>
</tr>
<tr>
<td>4.4.4.6 Hydroxyl Radical Scavenging Activity</td>
<td>91</td>
</tr>
<tr>
<td>4.4.5 Determination of α-Amylase Inhibitory Activity</td>
<td>91</td>
</tr>
<tr>
<td>4.4.6 Determination of Percent Hemolysis In vitro</td>
<td>92</td>
</tr>
<tr>
<td>4.4.7 Determination of Lipid Peroxidation in Plasma and Erythrocyte</td>
<td>92</td>
</tr>
<tr>
<td>4.4.8 Determination of LDL Oxidation in Plasma</td>
<td>93</td>
</tr>
<tr>
<td>4.4.9 Determination of Erythrocyte Membrane Protein Carbonyls</td>
<td>93</td>
</tr>
<tr>
<td>4.4.10 Determination of Plasma Advanced Oxidation Protein Products</td>
<td>94</td>
</tr>
<tr>
<td>4.4.11 Determination of Plasma Protein Hydroperoxides</td>
<td>94</td>
</tr>
</tbody>
</table>
CHAPTER 5
Results and Discussion 99-164

5.1 Antioxidant Activity of Different Layers of Onion Extract at Two Different Stages of Maturation In vitro 99
 5.1.1 Total Phenolic Content 99
 5.1.2 Total Flavonoid content 99
 5.1.3 Antioxidant activity by FRAP assay 102
 5.1.4 Free Radical Scavenging Activity using DPPH Radical 104
 5.1.5 Percent Scavenging Activity of Hydrogen Peroxide 104
 5.1.6 Reducing Power Activity 105
 5.1.7 Hydroxyl Radical Scavenging Activity 107
 5.1.8 Metal Chelating Activity 108
 5.1.9 α-Amylase Inhibitory Activity 109

5.2 Proximate Composition of Different Layers of Onion Extract at Two Different Stages of Maturation 111
 5.2.1 Moisture Content 112
 5.2.2 Protein Content 112
 5.2.3 Total Ash Content 113
 5.2.4 Crude Fibre Content 113
5.2.5 Fat Content 113
5.2.6 Carbohydrate Content 114

5.3 Effect of Different Layers of Onion Extract on Oxidative Stress Biomarkers in Erythrocytes subjected to Oxidative Stress by tBHP

In vitro: Comparison with Quercetin 115

5.3.1 Percent Hemolysis 115
5.3.2 Erythrocyte Malondialdehyde Content 116
5.3.3 Erythrocyte Glutathione Content 117
5.3.4 Plasma Membrane Redox System 119

5.4 Effect of Onion Extract on Oxidative Stress Biomarkers in Erythrocytes subjected to Oxidative Stress by Mercuric Chloride

In vivo: Comparison with Quercetin and Catechin 120

5.4.1 Effect of Mercuric Chloride Treatment on Body Weight of Rats in a 30 Day Period 120
5.4.2 Plasma Antioxidant Capacity 121
 5.4.2.1 Plasma Antioxidant Capacity by Frap assay 121
 5.4.2.2 Plasma Radical Scavenging Activity (by using DPPH Radical) 123
5.4.3 Lipid Oxidation 123
 5.4.3.1 Erythrocyte Lipid Peroxidation 123
 5.4.3.2 Plasma Lipid Peroxidation 124
 5.4.3.3 Plasma Low-Density Lipoprotein Oxidation 125
5.4.4 Protein Oxidation 127
 5.4.4.1 Protein Carbonyl 128
 5.4.4.2 Advanced Oxidation Protein Products 130
 5.4.4.3 Protein Hydroperoxides 131
 5.4.4.4 Plasma Total Thiol 133
5.4.5 Intracellular Reduced Glutathione 135
5.4.6 Plasma Ascorbic acid 137
5.4.7 Plasma Sialic Acid 138
5.4.8 Antioxidant Enzyme Paraoxonase 1 139
5.4.9 Plasma Membrane Redox System 141
5.4.10 Acetylcholinesterase Activity 142
5.5 Effect of Onion Extract on Oxidative Stress Biomarkers in Brain and Liver Tissues subjected to Oxidative Stress by Mercuric Chloride In vivo: Comparison with Quercetin and Catechin

5.5.1 Enzymatic and Non Enzymatic antioxidants
5.5.1.1 Catalase
5.5.1.2 Superoxide Dismutase
5.5.1.3 Intracellular Reduced Glutathione
5.5.1.4 Glutathione Peroxidases

5.5.2 Lipid Peroxidation

5.5.3 Protein Oxidation
5.5.3.1 Protein
5.5.3.2 Protein Carbonyl

5.5.4 Plasma Membrane Redox System

5.6 Effect of Different Layers of Onion Extract on Oxidative Stress Biomarkers in Alloxan Induced Diabetic Rats In vivo: Comparison with Quercetin

5.6.1 Blood Glucose Levels
5.6.2 Serum Free Fatty Acid
5.6.3 Serum Lipid Profile
5.6.4 Plasma Antioxidant Capacity by FRAP Assay
5.6.5 Erythrocyte Lipid Peroxidation
5.6.6 Erythrocyte Reduced Glutathione
5.6.7 Plasma Sialic Acid

CHAPTER 6

Conclusion 165-167

References 168-194

List of Publications 195

List of Conference Attended 196-198