Contents

Abstract i
Notation and Abbreviation iii
List of Figures vii
List of Tables xi

1. Introduction 1
 1.1. Control Engineering and Controller Design 1
 1.2. Conventional Control System 3
 1.2.1. The role of feedback concept in conventional control system 3
 1.2.2. Well-known mathematical techniques of conventional control system 4
 1.2.3. Brief explanation of conventional controller design 6
 1.3. Adaptive Control System 8
 1.3.1. Gain scheduling 9
 1.3.2. Model-references adaptive systems (MRAS) 11
 1.3.3. Self-tuning regulators (STR) 13
 1.3.4. Dual control 14
 1.4. Intelligent Control System 15
 1.5. Modular Structure Intelligent Control System 17
 1.6. Objectives of Thesis 18
 1.7. Organization of Thesis 20

2. PID Controllers: A Research Review 22
 2.1. Conventional PID Controllers 22
 2.2. The Nature of PID Controller in Frequency Domain 24
 2.3. Modified PID control schemes 26
 2.3.1. Two-Degrees-of-Freedom PID controllers 29
 2.3.2. PID controllers with compensation 31
2.3.3. Auto-tuning techniques for PID controller
2.3.4. PID controllers with gain scheduling
2.4. PID-like Artificial Intelligence Based Controllers
2.5. Discussions

3. A Proposed Modular Neuro-Fuzzy Control System
3.1. A Practical Control Problem
3.2. The Analysis of Required Characteristics of Controller in Different Operating Region
3.2.1. Stability analysis in frequency domain
3.2.2. Sensitivity analysis in frequency domain
3.2.3. Steady-state error analysis in frequency domain
3.2.4 Transient response analysis in frequency domain
3.2.5. Transient and steady-state analysis in time domain
3.3. Brief Review of Proposed Modular fuzzy Gain Scheduling Mechanism
3.3.1. Fuzzy logic in control applications
3.3.2. Defining local tuning strategies
3.4. The Proposed Switching Algorithm
3.4.1. Neural network in classification process
3.4.2. Brief review of proposed modular neural network classifier
3.5. Brief Overview of Proposed Adaptive Law
3.6. Proposed Modular Neuro-Fuzzy Controller Structure
3.7. Discussions

4. Knowledge-Based Modular Neural Network Classifier for Online Process Response Estimation
4.1. Introduction
4.2. Preliminary Classifier Design Considerations
4.2.1. Features selection
4.2.2. Discriminant functions selection 66
4.2.3. Knowledge-based classifier system 67
4.2.4. Multiple classifier system 67
4.3. Proposed Features Selection for Process Response Estimation
4.3.1. Extracting useful knowledge from process response analysis 69
4.3.2. Transformation of sensory data into useful features
 4.3.2.1. Defining current region 72
 4.3.2.2. Defining equilibrium state 75
4.4. Proposed Discriminant Functions Selection for Process Response Estimation
4.4.1. Detail structure of proposed discriminant functions 78
4.4.2. Refinement algorithm for proposed discriminant functions 82
4.5. Our Proposed Modular Neural Network Classifier 84
4.6. Discussions 86

5. Modular Fuzzy Gain Scheduling System 88
5.1. Introduction 88
5.2. The Proposed Tuning Strategies for Our Modular Fuzzy Gain Scheduling Mechanism
 5.2.1. Tuning strategy for steady-state 89
 5.2.2. Tuning strategy for rise time state 89
 5.2.3. Tuning strategy for overshoot/oscillation state 90
 5.2.4. Tuning strategy for disturbance state 91
5.3. The Required Fuzzy Inference Systems for Proposed Tuning Strategies 91
5.4. The Structure of Fuzzy Inference System 93
5.5. The Proposed Structure of Fuzzy Inference System 95
 5.5.1. Selection of input output variables 96