CONTENTS

CHAPTER 1

1.1 Chemistry of gibberellins 4
1.2 Biological Activity of gibberellins 5
1.3 Commercial uses of gibberellins 8
1.3.1 Commercial uses of GA₃ 8
1.3.2 Commercial uses of GA₄–7 9
1.4 Biosynthesis of gibberellins in *F. fujikuroi* 11
1.4.1 Regulation of GA gene expression in *F. fujikuroi* 16
1.5 Production of gibberellins 19
1.5.1 Strain improvement 19
1.5.2 Media optimization 21
1.5.3 Environmental factors in gibberellin production 23
1.5.4 Fermentation techniques for GA₃ production 23
1.6 Extraction and purification of gibberellins (GA₃, GA₄ and GA₇) 28
1.7 REFERENCES 32

CHAPTER 2

2.1 Analytical and Microbiological Methods Employed During Course of Study 47
2.2 Chemicals 47
2.3 Details of Analytical methods 48
2.3.1 Microscopic Count of Cells/Fragments and Protoplasts 48
2.3.2 Dry cell weight Estimation 48
2.3.3 Residual sugar analysis 48
2.3.3.1 Estimation of sugar by using LIQUIZONE Glucose-MR GOD-POD kit 48
2.3.3.2 Estimation of reducing sugar by DNSA (Dinitro salicylic acid method) 49
2.3.3.4 Estimation of sugars by HPLC 51
2.3.4 Estimation of intracellular lipids 51
2.3.5 High Performance Liquid Chromatography (HPLC) 52
2.3.5.1 HPLC Instrument 52
2.3.5.2 Sample preparation 52
2.3.5.3 Analysis of Gibberellins 52
2.3.5.3a Reversed Phase HPLC Analysis of Gibberelic Acid (GA₃) 53
2.3.5.3b Reversed Phase HPLC Analysis of Gibberellin₄ (GA₄) 54
2.3.5.4 Reversed Phase HPLC Analysis of Fusaric acid
2.3.5.5 Reversed Phase HPLC Analysis of Moniliformin
2.3.6 Melting point analysis of extracted and purified Gibberellin A3
2.3.7 Nuclear Magnetic Resonance (NMR)
2.3.8 Liquid Chromatography with Mass Spectrophotometer (LC-MS)

CHAPTER 3
3.1 INTRODUCTION
3.2 MATERIALS AND METHODS
3.2.1 Microorganisms
3.2.2 Chemicals
3.2.3 Media composition
3.2.4 Growth in Tube Culture
3.2.5 Growth in Shake flasks
3.2.6 Screening of strains for GA3 production
3.2.7 Choice of carbon source
3.2.8 Screening of nitrogen sources for selected GA3 producing cultures
3.2.9 Mutagenesis of selected strain
3.2.10 Mutant selection
3.2.10.1 Screening of the selected mutants in tubes
3.2.10.2 Shake flask screening of selected mutants for GA3 production
3.2.10.3 Comparison of selected mutants
3.2.11 Characterization of selected mutant Mut189 of F. fujikuroi
3.2.11.1 Morphology
3.2.11.2 Carbohydrate utilization
3.2.12 Protoplast fusion
3.2.12.1 Microorganisms
3.2.12.2 Optimization of protoplast formation
3.2.12.3 Separation and Regeneration of protoplasts
3.2.12.4 Intergeneric protoplast fusion and selection of fusant
3.2.12.5 Production of GA3 by Selected Fusant
3.3 RESULT AND DISCUSSION
3.3.1 Selection of strain for production of GA₃
3.3.2 HPLC analysis
3.3.3 Choice of carbon source
3.3.4 Screening of nitrogen sources for selected GA₃ producing culture
3.3.5 Mutagenesis
3.3.6 Preliminary screening of the selected mutants
3.3.7 Shake flask screening of selected mutants for GA₃ production
3.3.8 Comparison of selected mutants
3.3.9 Characterization of selected mutant Mut189 of F. fujikuroi
3.3.9.1 Morphology
3.3.9.2 Carbohydrate utilisation by mutant Mut189
3.3.10 Protoplast fusion
3.3.10.1 Optimization of protoplast formation
3.3.10.2 Protoplast Fusion and Selection of fusant
3.3.10.3 Production of GA₃ by Selected Fusant
3.4 CONCLUSIONS
3.5 REFERENCES

CHAPTER 4

4.1 INTRODUCTION
4.2 MATERIAL AND METHODS
4.2.1 Shake flask cultures
4.2.2 Choice of carbon source for GA₃ production
4.2.3 Choice of nitrogen source for GA₃ production
4.2.4 Evaluation of growth and GA₃ production in media with different concentrations of defatted soyabean meal
4.2.5 Mutant stability for GA₃ production
4.2.6 Time-course study of GA₃ production by Mut189 in optimized medium
4.2.7 Effect of control of pH on rate of GA₃ production
4.2.8 Effect of temperature on GA₃ production during stationary phase
4.2.9 Effect of glucose feeding on GA₃ production
4.2.10 Evaluation of mutant Mut189 for GA₃ production in 14 L fermenter
4.2.10.1 Batch fermentation for GA₃ production
4.2.10.2 Extractive fermentation
4.2.10.3 Repeated batch fermentation
4.2.10.4 Fed-batch fermentation for GA₃ production
4.2.11 Purification and characterization of GA₃ from the fermentation broth
4.3 RESULTS AND DISCUSSION
4.3.1 Choice of carbon source for GA₃ production
4.3.2 Choice of nitrogen source for GA₃ production
4.3.3 Evaluation of growth and GA₃ production in media with different concentrations of defatted soyabean meal
4.3.4 Mutant stability for GA₃ production
4.3.5 Time course study of GA₃ production by mutant Mut189 in optimized medium
4.3.6 Effect of pH on rate of GA₃ production
4.3.7 Effect of temperature on GA₃ production during stationary phase
4.3.8 Effect of glucose feeding on GA₃ production
4.3.9 Evaluation of mutant Mut189 for GA₃ production in 10 L fermenter
4.3.9.1 Batch fermentation
4.3.9.2 Extractive Fermentation
4.3.9.3 Repeated batch fermentation
4.3.9.4 Fed batch fermentation
4.3.10 Analysis of fusaric acid and moniliformin
4.3.11 Purification and characterization of GA₃ from the fermentation broth
4.4 CONCLUSIONS
4.5 REFERENCES

CHAPTER 5
5.1 INTRODUCTION
5.2 MATERIALS AND METHODS
5.2.1 Microorganisms
5.2.2 Media
5.2.3 Culture conditions
5.2.3.1 Tube cultures
5.2.3.2 Shake flask cultures
5.2.4 Screening of cultures for production of GA₄
5.2.5 Effect of pH on GA₄ production
5.2.6 Preparation of wheat gluten
5.2.7 Choice of carbon source for GA₄ production by mutant Mut189 191
5.2.8 Screening of different nitrogen sources for GA₄ production by Mut189 192
5.2.9 Evaluation of GA₄ production in 10 L fermenter by mutant Mut189 192
5.3 RESULTS AND DISCUSSION 193
5.3.1 Screening of cultures for production of GA₄ 193
5.3.2 HPLC Analysis of GA₄ 195
5.3.3 Effect of pH control on GA₄ production 198
5.3.4 Choice of carbon source for GA₄ production by mutant Mut189 199
5.3.5 Screening of different nitrogen sources for GA₄ production by Mut189 200
5.3.6 Evaluation of GA₄ production in 10 L fermenter by mutant Mut189 203
5.4 CONCLUSIONS 206
5.5 REFERENCES 207