Chapter 2
THEORETICAL CONSTRUCTS

2.1 Background sketch of Models of Teaching
2.2 Constructive trends of Self directed learning
2.3 A Methodological probe to ‘Create’
2.4 Constructive background of Creativity
THEORETICAL CONSTRUCTS

2.1 BACKGROUND SKETCH OF MODELS OF TEACHING

Models of teaching are frameworks for instruction that employ systematized sets of strategies grounded on the theories and researches of educationist, psychologists, philosophers and others to achieve specific goals of learning. Models are representations of aspects of a theory. (Miller and Anderson, 2007). Teaching models can be a striking tool while strategizing instruction for differentiation, and can be used by educators in the teaching learning procedure for accomplishing specific instructional objectives. The frameworks organized by Joyce and Weil are magnificent in this field.

Model of Teaching as described by Bruce Joyce and Marsha Weil is a plan or pattern that can be used to shape curricula, to design instructional materials and to guide instruction in the classroom and other settings. "Models of Teaching are really models of learning. As we help students acquire information ideas skills, values, ways of thinking, and means of expressing themselves, we are also teaching them how to learn. In fact, the most important long term outcome of instruction may be the students' increased capabilities to learn more easily and effectively in the future, both because of the knowledge and skills they have acquired and because they have mastered learning processes” (Joyce and Weil, 2003).

It is generally assumed that every teacher who wish to revamp their instruction by setting different learning goals more professional expertise and effectuate more learning in their students than do teachers who practice the usual approach to fulfill all their learning goals. Unusual and creative approaches to teaching learning process are required to attain these different learning goals.
Research confirms that good teaching is the utmost important factor in student learning. It’s more important than curriculum, technology, classroom organization, peers, financing, school and class size, and school principals (Hattie, 2003). In a sequential sphere Joyce and Weil (2015) the classic definition of teaching is creating environments to facilitate learning. A model of teaching is a way of building a nurturant and stimulating ecosystem within which the students learn by interacting with its components. Various models pull students into particular types of content and increase their competence to grow in the personal, social, and academic domains.

Models of Teaching are specially designed for specific purposes—the teaching of information, concepts, ways of thinking, the study of social values and so on—by asking students to engage in particular cognitive and social tasks. Some models center on delivery by the instructor while others develop as the learners respond to tasks and the student is regarded as a partner in the educational enterprise. However all mature models emphasize how to help students learn to construct knowledge—learning how to learn including learning from the sources that are often stereotyped as passive, such as learning from lectures, short films and documentaries, reading assignments,

2.1.1 CLASSIFICATION OF MODELS

Joyce and Weil classified the models of teaching that they have discovered into four families. They are shown in the following figure 2.1
Figure 2.1: Classification of models of teaching
Joyce and Weil explain that when we work together, we generate a collective energy called synergy. The social models of teaching are constructed to take advantage of this phenomenon by building learning communities. Information-processing models emphasize ways of enhancing the human being’s innate drive to make sense of the world by acquiring and organizing data, sensing problems and generating solutions to them, and developing concepts and language for conveying them. The cluster of personal models pays great attention to the individual perspective and seeks to encourage productive independence, so that people become increasingly self-aware and responsible for their own destinies. Behavioral models concentrate on observable behavior and clearly defined tasks and methods for communicating progress to the student, this family of teaching models has a firm research foundation. Behavioral techniques are appropriate for learners of all ages and for an impressive range of educational goals. (Joyce and Weil, 2015)
2.1.2 DISPOSITIONAL STANCE ON COMPONENTS OF MODELS

According to Joyce and Weil (1972) the components of models of teaching are as follows:

Syntax

Syntax of the model describes the model in action. It is described in terms of sequence of events called phases. Each model has a distinct flow of phases (Joyce and Weil, 1972).

The Social System

The social system describes students’ and teachers’ roles and relationship and the kinds of norms that are encouraged. The leadership roles of the teacher vary greatly from model to model (Joyce and Weil, 1972). It concerns the additional requirements over the usual personal expertise, aptitude and technicalized facilities required for the implementation of the model.
Theoretical Constructs

Principle of Reaction

Principle of reaction tells the teacher’s response to what the learner does. It guides the teacher how to regard the learner and respond accordingly. (Joyce and Weil, 1972)

Support System

Support system refers to additional requirements beyond the usual human skills, capacities, and technical facilities necessary to implement a model. (Joyce and Weil, 1972). This supporting conditions required to implement the model includes books, ICT materials, laboratory facilities, reference materials etc.

Instructional and Nurturant Effects

The effect of an atmosphere can be direct or can be implicit in the learning environment. The Instructional effects are the effects that are directly achieved by orienting the learner in certain specific directions. The Nurturant effects are those that happen from familiarizing the learning environment created by the model. (Joyce and Weil, 1972)

2.2 CONSTRUCTIVE TREND OF SELF DIRECTED LEARNING

Self directed learning is viewed as an educational approach which focus on the self direction of the individual, teaching students to complete the requirements of their learning programme independently and to go outside of these requirements to follow their own challenging goals of life by creating the best possible learning experience to the students for their successful completion of education. Huang (2008) note that the origin of self directed learning can be traced back to John Dewey. Dewey proposed that all persons are born with an unlimited potential for growth and development. He defined education as the agency that facilitates this
growth and cautioned that the teacher should be the one who guides but does not interfere with nor control the process of learning (Dewey, 1938). Later the terminology self directed learning was presented by Houle’s (1961) in his research based on the motivation of learners and the research of adult learning by Tough (1979). Knowles’ (1975) book on self directed learning made the concept popular and catalyzes increased conscious to its importance for adult learners and then specified self directed learning a prominent concept in educational theory and research.

Self directed learning is a purposeful mental process, normally accompanied and backed by behavioral activities intricate in the identification and searching out of knowledge and ideas. The learner consciously and voluntarily accepts the responsibility to take decisions about goals and objectives, and is, hence, one's own learning opportunities. Loyens, Magda and Rikers, (2008) says that self directed learning is a process in which the learner takes the initiative and responsibility for setting his own learning goals, identifying and addressing gaps in his learning, identifying resources, selecting and carrying out learning strategies and evaluating his own learning.

Various definitions of self-directed learning have been presented in the literature. Knowles (1975) defines self directed learning as a process in which individuals take the initiative with or without the help of others, in diagnosing their learning needs, formulating learning goals, identifying human and material resources for learning, choosing and implementing appropriate learning strategies, and evaluating learning outcomes. Maurice gibbons (2002) explains that self directed learning is any increase in knowledge, skill, accomplishment or personal
development that an individual selects and brings about by his or her own efforts using any method in any circumstances at any time. Guglielmino (2008) explicated self directed learning in terms of context, activation, and universality. She argued that self directed learning is an innate, basic, and natural characteristic of human being when encountering challenges and this characteristic varies on the continuum, depending on situations.

The central decision for teachers moving towards self directed learning is determining how to present the course. Morris Gibbons (2002) explains four stages or approaches to self directed learning: teaching students to think independently, teaching self managed learning, teaching self planned learning, or teaching self directed learning.

Self directed learning researchers suggested and put forwarded various conceptual models to explicate the heterogeneity of self directed learning and make out the progress of learners self directedness in learning. Huang (2008) notes that these conceptual models fall into three categories: linear, interactive, and instructional models. (Merriam and Caffarella, 1999). The most significant example for linear model is developed by Knowles (1975). Models such as the Personal Responsibility Orientation (PRO) model by Brockett and Hiemstra (1991), Garrison’s model (1997) formalized the concept of self directed learning at an interactive level. The instructional models, including Grow’s (1991) Staged Self Directed Learning (SSDL) model, and Hammond and Collin’s (1991) models, represent “frameworks that instructors in formal settings use to integrate self directed methods of learning in to their programmes and activities” (Merriam and Caffarella, 1999).
2.2.1 Models that are based for Crafting of an Elucidated Self directed learning model

Before developing the model of teaching based on the objective ‘create’, the investigator developed a new model of self directed learning. The investigator reviewed various theories and model of self directed learning, Knowles 5 stage model and Self directed learning cycle are observed most sufficient for Crafting of an elucidated Self directed learning model.

2.2.1.1 Knowles 5 stage model

The investigator selected Knowles 5 stage model (1975) for developing the model of self directed learning. According to Malcolm Knowles “self directed learning is a process in which individuals take the initiative with or without the help of others, in diagnosing their learning needs, formulating learning goals, identifying human and material resources for learning, choosing and implementing appropriate learning strategies, and evaluating learning outcomes.”

Knowles puts forward three immediate reasons for self directed learning. First he argues that there is convincing evidence that people who take the initiative in learning learn more things, and learn better, than those people who depend on teachers passively waiting to be taught. Their entry to the learning process is more purposeful and with greater motivation. Second immediate reason is that self directed learning is more in turn with the natural process of psychological development. ‘An essential aspect of maturing is developing the ability to take increasing responsibility for our own lives to become increasingly self directed’ (Knowles, 1975). The third immediate reason is that many new developments in education put a heavy responsibility on the learners to take a good deal of initiative in their own learning.
According to Knowles, the main purpose of education is to develop the skill of inquiry and Knowles put the idea of self direction into packaged form of activity and popularised through a five step model. An overview of Knowles 5 step model is depicted in figure 2.3 to give an idea of the model.

Figure 2.3: Pictorial representation of Knowles Self directed learning model

2.2.1.2 Self directed learning cycle

The ability of a student to become a self directed learner relies on the development of their metacognitive skills, or the ability to reflect and assess their own learning and thinking. Ambrose et al. 2010 states “to become self directed learners, students must learn to assess the demands of the task, evaluate their own knowledge and skills, plan their approach, monitor their progress, and adjust their strategies as needed”. The process of monitoring and controlling mutually affect each other, these models often take the form of a cycle and depend on the student's belief about intelligence and learning. Self directed learning cycle provides students with full autonomy to drive their learning, and own the process of learning.
Self directed learning cycle (Ambrose et.al. 2010) comprising five stages of Self directed learning namely assess the task, evaluate strength and weakness, plan, apply strategies and monitor performance and reflect and adjust if needed was adopted to develop the model of self directed learning and was depicted in figure 2.4

Figure 2.4: Pictorial representation of Self directed learning cycle

Assess the task at hand

Assess the task at hand, taking into consideration the task’s goals and constraints and making assumptions about the task based on their previous educational experiences. That is, they manage to determine what needs to be done to effectively complete the assignment. Be more explicit with assessment objective and explain why the task’s goals are important. Ambrose et.al. (2010) says that students may need to (1) learn how to assess the task, (2) practice incorporating this step into their planning before it will become a habit, and (3) receive feedback on the accuracy of their task assessment before they begin working on a given task.
Evaluating one's own strength and weaknesses

In this stage students identify and evaluate their own knowledge and specific skills, identifying strengths and weaknesses. Students are given practice and feedback early on to help them develop more accurate awareness of their strengths and weaknesses. Provide opportunities for students to self assess with emphasis on the importance of this type of activity.

The tendency to inaccurately assess one’s knowledge and skill relative to a particular goal is particularly troubling because it has serious consequences for one’s ability to achieve that goal. If these students had managed to evaluate their abilities more realistically, they might have engaged more appropriate strategies that, in turn, could have produced better outcomes.

Planning an appropriate approach

In this stage students plan their approach in a way that accounts for the current situation. Planning one’s approach to a task can increase the chances of success. Here students are asked to plan a solution strategy for a set of problem that involves how they would solve each problem and how they would approach the task. But students may not recognize the need for planning. In this stage students generally face two types of planning problems like lack of planning enough for a complex task and inappropriate planning for the current situation.

Ambrose observes that students spend too little time for planning their approach. Within that the experts spent proportionately much more time than novices planning their approach and most of the time novice plans less appropriately.
Apply strategies and monitoring performance

In this stage students apply various strategies to enact their plan, and monitoring their progress along the way. Once students have a plan and begin to apply strategies that implement their plan, and need to monitor their performance. Without effectively monitoring their own progress, students may continue to apply an ineffective strategy and consequently waste time and achieve poor outcomes.

Ambrose observes that students who naturally monitor their own progress and try to explain to themselves what they are learning along the way generally show greater learning gains as compared to students who engage less often in self-monitoring and self-explanation activities.

Reflecting on and adjusting one's own approach

In this stage after monitor their performance and identify failures or shortcomings in their approach, students reflect on their performance and address their own strengths and weaknesses. Reflection provides students with different strategies to approach a task or problem. This stage prompts students to self reflect on the degree to which their current approach is working so that they can adjust and restart the cycle if needed.

Assessment of Self directed learning

Self directed learning is a process in which the learner takes the initiative and responsibility for setting his own learning goals, identifying and addressing gaps in his learning, identifying resources, selecting and carrying out learning strategies and evaluating his own learning (Loyens, Magda, and Rikers, 2008). Assessment is the key to improvement. By improving attitudes and process as well as the product of any learning enterprise, students are becoming equipped to pursue excellence.
Theoretical Constructs

(Gibbons, 2002). Student self assessment is the process by which the students gather information about and reflect on their own learning and is considered to be a very important component of learning (Sharma et al. 2016).

The appropriate assessment for self directed learning is student self assessment. In self assessment, students evaluate the complete process of action learning from conception through performance to the outcome or product. Students assess themselves because it is an essential skill for successful self direction. It is meta-learning; learning how to learn includes learning how to assess how well one is learning (Gibbons, 2002).

2.3 A METHODOLOGICAL PROBE TO ‘CREATE’

Anderson and Krathwohl (2001) revised the Bloom’s Cognitive Taxonomy that had been a staple in teacher training and professional preparation for almost 40 years. The revised framework of taxonomy is represented in a two-dimensional table that is called the Taxonomy Table. The rows and columns of the table contain carefully delineated and defined categories of knowledge and cognitive processes, respectively. The authors settled on four general types of knowledge: factual, conceptual, procedural, and metacognitive. The revised framework includes six categories of processes: remember, understand, apply, analyze, evaluate, and create. The revised taxonomy table is given below.
The revised Bloom’s Taxonomy Table

<table>
<thead>
<tr>
<th>The knowledge dimension</th>
<th>The cognitive process dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Remember</td>
</tr>
<tr>
<td>A. Factual knowledge</td>
<td></td>
</tr>
<tr>
<td>B. Conceptual knowledge</td>
<td></td>
</tr>
<tr>
<td>C. Procedural knowledge</td>
<td></td>
</tr>
<tr>
<td>D. Metacognitive knowledge</td>
<td></td>
</tr>
</tbody>
</table>

Create involves putting elements together to form a coherent or functional whole. Objectives classify as Create have students make a new product by mentally reorganizing some elements or parts into a pattern or structure not clearly present before. The process involved in create are generally coordinated with the student’s previous learning experiences. Although create requires creative thinking on the part of the student, this not completely free creative expression unconstrained by the demands of the learning task or situation. (Anderson and Krathwohl, 2001).

Anderson and Krathwohl (2001) explain that the creative process can be broken into three phases: problem representation in which a student attempts to understand the task and generate possible solutions; solution planning, in which a student examines the possibilities and devices a work plan; and solution execution, in which a student successfully carries out the plan. The creative process can be thought of as starting with a divergent phase in which a variety of possible solutions are considered as the student attempts to understand the task (generating). This is followed by a convergent phase, in which the student devises a solution method and
turns into a plan of action (planning). Finally, the plan is executed as the student constructs the solution (producing); that is create is associated with three cognitive processes: generating, planning, and producing.

Generating

Generating involves representing the problem and arriving at alternatives or hypotheses that meet certain criteria. Often the way a problem is initially represented suggests possible solutions; however, redefining or coming up with a new representation of the problem may suggest different solutions. When generating transcends the boundaries or constraints of prior knowledge and existing theories, it involves divergent thinking and forms the core of what can be called creative thinking. An alternative term for generating is hypothesizing (Anderson and Krathwohl, 2001).

Planning

Planning involves devising a solution method that meets a problem’s criteria, that is, developing a plan for solving the problem. Planning stops short of carrying out the steps to create the actual solution for a given problem. In planning student may establish sub goals, or break a task into subtasks to be performed when solving the problem. An alternative term is designing. (Anderson and Krathwohl, 2001).

Producing

Producing involves carrying out a plan for solving a given problem that meets certain specifications. Objectives within the category create may or may not include originality or uniqueness as one of the specifications. An alternative is constructing.
In general create simply means to produce something. Anderson and Krathwohl (2001) says that, “in create, the students must draw upon elements from many sources and put them together into a novel structure or pattern relative to his or her own prior knowledge. Create results in a product, which is something that can be observed and that is more than the students beginning materials”. Drapeau (2009) note that in this definition, creating is seen as more of a synthesis and takes into account many levels of thinking. Students may need to brainstorm ideas, analyze them, evaluate them, modify them, and elaborate on them before creating a product. A close analysis of the theoretical constructs in the field of ‘create’ indicates that the terminology ‘create’ is closely associated with creativity. Anderson and Krathwohl, (2001) says that create requires creative thinking on the part of the student, this not completely free creative expression unconstrained by the demands of the learning task or situation. The term ‘create’ that is used in the present study is mainly to target creativity.

2.4 CONSTRUCTIVE BACKGROUND OF CREATIVITY

Creativity is the ability to produce original works and ideas using creative process. The creative process involve processing relevant ideas and information to come out with creative ideas and perspectives. Creativity can be defined as the ability to produce original ideas and new items. It also includes the combining of existing work, objects, and ideas in different ways for new purposes. Three important components of creativity are the creative person, the creative product, and the creative process. (Kanematsu and Barry, 2016).

Sefertiz (2000) says that there are many definitions of creativity. A number of them suggest that creativity is the generation of imaginative new ideas (Newell
Theoretical Constructs

and Shaw 1972), involving a radical newness innovation or solution to a problem, and a radical reformulation of problems. Other definitions propose that a creative solution can simply integrate existing knowledge in a different way. A third set of definitions proposes that a creative solution, either new or recombined, must have value (Higgins 1999). To combine this variety of definitions, we can say that creativity involves the generation of new ideas or the recombination of known elements into something new, providing valuable solutions to a problem.

Sefertiz (2000) quotes (Candy 1997, Schlange and Juttner 1997) the main objectives of a creative thinking process is to think beyond existing boundaries, to awake curiosity, to break away from rational, conventional ideas and formalized procedures, to rely on the imagination, the divergent, the random and to consider multiple solutions and alternatives.

For the present study, the investigator explored various models that have been suggested in the literature explaining creativity and creative thinking process. Gerlovina, (2011) note that there are psychodynamic models, the personality models, the psychometric models, the problem solving models, and the constraints model of creativity; Dancey and Madaus, (1969) attempts to define creativity based on widely divergent theories of creativity including biology, associationism, traditional logic, factor analysis, S-R connectionism, psychoanalysis, cognitive psychology, and computer simulation of intellectual operations.

2.4.1 Models that are based for the Structured interface Creativity Model

The investigator reflected upon the varied theoretical versions of creativity and Creative Problem Solving Model version 6.1 and Directed Creativity Cycle are found to be most suitable for developing the new model of creativity.
2.4.1.1 Creative Problem Solving Model version 6.1

Creative Problem Solving Model (CPS) Version 6.1 (Treffinger, Isaksen, & Dorval, 2000) comprising four main components of creativity namely understanding the challenge, generating ideas, preparing for action, and planning your approach, and eight specific states was adopted and was depicted in figure 2.5.

Figure 2.5: Visual exemplification of Creative Problem Solving Model (CPS) Version 6.1
Understanding the challenge

Understanding the challenge involves investigating a broad goal, opportunities, or challenge, and clarifying, formulating, or focusing our thinking to set the principal direction for solving the problem. The specific stages of the component understanding the challenge are constructing opportunities, exploring data, and framing problems. Constructing opportunities include stating broad, brief, and beneficial opportunities and goals, and considering possible opportunities and challenges, and identify a constructive goal to pursue. Exploring data examines many sources of data from different points of view, and focusing on the most important elements of the task or situation. In framing problems generating many varied and unusual ways to pose the problem, and the focusing on a specific statement that will “open the door” invite creative ideas.

Generating ideas

The component generating ideas which has one stage, involves coming up with many new possibilities. It is an open exploration or search for ideas, in which learners can generate many different ideas (fluency), varied ideas and new perspectives (flexibility), and unusual or novel ideas (originality), and then focus student thinking by identifying ideas with interesting or exciting potential to refine, develop, and put to use. Generating Ideas helps students to “stretch” their thinking and to break away from the limitations or assumptions that might hold them back by giving opportunities for thinking “inside the box in new ways” as well as “outside the box.”
Preparing for action

Preparing for action involves exploring ways to make promising options into workable solutions and preparing for successful implementation. The specific stages of this component are Developing solutions and Building acceptance. When students need to move promising new possibilities towards successful action or implementation they can use one or more of the two stages in this component. In developing solutions, students applying deliberate strategies and tools to analyze, develop, and refine promising possibilities, and to transform them into promising solutions. This stage will help students to use practical tools to turn “good ideas” into powerful new solutions. Building Acceptance considers different ways to build support and to decrease or overcome resistance to possible solutions, and planning specific ways to carry out and evaluate your results and effectiveness. This stage helps students to implement creative ideas successfully.

Planning your approach

The final component of creative problem solving is planning your approach, which involves keeping track of student thinking while it is happening, to insure that students are moving in the direction they want to go. The specific stages of the component planning your approach are Appraising the task and Designing process. Appraising the task determines whether CPS is a promising choice for dealing with a particular task, and taking stock of the commitments, constraints, and conditions you must consider to apply CPS effectively. In designing process, using students knowledge about the task and their needs to plan the CPS components, stages, or tools that will be best-suited to help them to reach their goals. Designing Process
helps students to choose and use the components, stages, or tools that they really need and increase the relevance and efficiency of their efforts.

2.4.1.2 Directed Creativity Cycle

The investigator also selected Plark's directed creativity cycle (Plsek1996/1997) for developing the model of creativity. Plsek’s model shows creativity as a cycle and he developed the Directed Creativity Cycle, as a framework of creativity thought patterns that blends and integrates many principles associated with the numerous frameworks and models recommended throughout the last century.

An over view of model of directed creativity cycle is depicted in figure 2.6 to give an idea of the cycle.

Figure 2.6: Visual exemplification of Directed creativity cycle

Plsek divided the creative process into four phases: Preparation, Imagination, Development, and Action.
Phase 1: Preparation

This is the start of the creative cycle where the learners prepare for new ideas. If the cycle is viewed like the face of a clock, preparation is a 9. This quarter of the cycle takes place before the actual process begins. It's simply a process of intentional living and thinking about the world around us.

Living with it

As creative people, they live in the same world as everyone else. But there is a difference. As Plsek says: creative thinking begins with careful observation of the world coupled with thoughtful analysis of how things work and fail.

Observation

When the learners begin to observe their experience, creativity is triggered. For example, the moment they started to be interested in their lack of creativity – instead of bemoaning it – inspiration started to happen.

Analysis

As writers learners are their own guinea pigs. When they start to look deeply into what they experience, they prepare the ground for imagination.

Phase 2: Imagination

This is the phase of inspiration and creative action. This is the first moment that the learner’s internal process hits the air. The generated ideas may be vaguely formed at first. Then "harvest" the ideas and attempt to bring them into some coherent form.

Generation

Generating ideas means the active work of creativity through using brain storming, mind maps, or other techniques in order to come up with something new
and novel. The generated ideas may not pass the test of their self-editing process to come. But it’s too early to think about that. It’s time to generate lots of ideas in a form that can be recorded or stored in some way for later evaluation.

Harvesting

Harvest is a joyous time. Here learners do not have to implement all of their creative ideas coming out of the generating stage of the imagination phase. Learners need to harvest their fresh ideas by selecting a few that you think will be successful innovations and save the rest for later. Harvesting is the time to get more people, either a group, individual, or combination of both be involved in the process to get consensus on which ideas fall into the desirable direction.

Phase 3: Development

In the writer’s cycle of creation, the phase of development means editing their own work, by keeping the goals in mind. They’ve got words on the page. They have a rough draft. Now it’s time to shape what they’ve written. This is the phase in which learners work their ideas into something with structure and form.

Enhancement

Each idea selected needs purposeful enhancement. Enhancement further strengthens the strong points of the idea, and shores up its weak points. Shortcutting enhancement is a common pitfall, leading to half-baked ideas that fail. Overdoing enhancement is equally problematic. Documentation of the idea in a way is essential to supports the needs of the decision makers who must evaluate the idea.
Evaluation

Each idea selected must be evaluated to get a definite feedback. Evaluation of innovative idea is inherently an intuitive process. Learners must implement the idea in order to truly know what will happen. Questions ask here are: “Have I said what I wanted to say?” or “Have I developed my ideas clearly?”

Phase 4: Action

Action means sharing of ideas with others. According to Plsek's model, creative ideas only become valuable when put into practice and sharing them. This stage of the framework clarifies that creative ideas have worth on condition that these are generally executed in real life.

Implementation

The final task of creativity is to give life to the idea. After judgment, learners are deciding how exactly to proceed in implementing ideas. The act of implementation is the end of the cycle of creativity. But it leads seamlessly to the beginning. Immediately the cycle begins again.

The framework of theoretical constructs assisted the researcher to enrich the existing domain of knowledge to arrive at and bring a paradigmatic path to formulate the solution pathways to the research questions. It also supported the researcher to select and follow the roots in the development of the new model of teaching incorporating creativity and self directed learning. The strong theoretical base helps the researcher to demarcate the role of select constructs of the variable to substantiate study.