CHEMICAL COMPOSITION AND EFFECTS OF ENVIRONMENTAL FACTORS ON ESSENTIAL OILS OF SOME PLANTS BELONGING TO FAMILIES – LAMIACEAE, CHENOPODIACEAE AND APIACEAE

Thesis
Submitted for the Degree of
Doctor of Philosophy
in
Chemistry
KUMAUN UNIVERSITY
2017
by
VINEET KANDPAL
Department of Chemistry
M. B. Govt. P. G. COLLEGE
Haldwani (Nainital) – 263139
Uttarakhand (India)
M.B. Govt. P.G. College, HALDWANI

Dr. NEETA JOSHI
Associate Professor
Department of Chemistry
M.B.Govt.P.G. College
Haldwani, Distt- Nainital

CERTIFICATE

This is to certify that Mr. Vineet Kandpal has carried out the research work under my supervision for the award of Ph.D. Degree in Chemistry and put in the required period of attendance in the Department of Chemistry, M. B. Govt. P. G. College, Haldwani, Nainital.

The work included in the thesis entitled “Chemical Composition and Effects of Environmental Factors on Essential Oils of Some Plants Belonging to Families – Lamiaceae, Chenopodiaceae and Apiaceae” is original unless stated otherwise and has not been submitted for any other Degree.

Date: May 12, 2017

(Dr. Neeta Joshi)

Dr. N. D. Kandpal
Professor

Department of Chemistry
ACS College
AUGUSTA UNIVERSITY
K.P.D. Road
Kathmandu, Nepal
(Thana Khanal, India)
DECLARATION

I hear by declare that this thesis is a presentation of my original research work wherever contribution of others are involved, every effort is made to indicate this clearly, with due reference to the literature and acknowledgement of collaborative research and discussion. The work was done under the guidance of Dr. Neeta Joshi Associate Professor Department of Chemistry, M. B. Govt. P. G. College, Haldwani, Nainital.

The thesis has not been submitted for the award of any degree, diploma or fellowship of any university or institution.

Date: 12 May, 2017
Place: Haldwani

(Vineet Kandpal)
The diversified topography of the Kumaun and Garhwal region of western Himalaya favours the growth of a variety of aromatic flora. Some of these are valuable for different industries and a number of these have been used as indigenous medicines by the rural folk. The author has undertaken the study of effect of environment on chemical composition of essential oil of plants *Hyptis suaveolens* (L.) Poit. *Anisomeles indica*, *Chenopodium ambrosioides* and *Selenium wallichianum* by comparing chemical composition of essential oil during different growth phases of plant. The author also studied antimicrobial activity of essential oil and physicochemical composition of soil holding plant during each plant harvest.

The subject matter of this thesis has been divided into seven chapters. Chapter-I deals with General Introduction. The analysis of seasonal variation in essential oil composition of the selected four plants of families Lamiaceae, Chenopodiaceae and Apiaceae has been discussed under Chapter-II, III, IV, and V. Chapter-VI deals with antimicrobial activity screening of essential oils against selected fungi. Soil analysis at the time of harvesting of plant at different growth phases has been incorporated in Chapter-VII.
Acknowledgement

The work presented in this monograph was performed under the supervision of Dr. Neeta Joshi, Associate professor, Department of Chemistry, M.B. Govt. P.G. College Haldwani, to whom I am expressing my sincere gratitude and humble thanks for continuous guidance, invaluable help, immaculate suggestions, continuous inspiration, constant encouragement and heartfelt blessings throughout the course of the work.

I deem it my privilege to have undertaken this investigation under valuable, thoughtful, inspiring guidance and expert supervision of Professor Y.P.S. Pangtey, former Head, Botany Department and Professor C.S. Mathela, former Head, Chemistry Department, Kumaun University, Nainital.

I am grateful to Dr. Uma Melkani, Dean C.B.S.H. Pantnagar, Dr. J. Kumar, Dean college of Agriculture Pantnagar for providing me necessary lab facilities and Dr. A.K. Tiwari and Mr. K.S. Bisht oil seed lab Pantnagar, for assistance at each step of my antifungal studies investigation.

I wish to extend my thanks to Dr. Geeta Tiwari, Dr. Chitra Pandey, Chemistry Department, D.S.B. Campus, Kumaun University, Nainital for their continuous help during the course of lab work.

It is my privilege to express profound thanks to Dr Ajai kumar AIRF lab JNU for GC, GC/MS and NMR analysis of essential oil, Dr. S.K. Srivastava (Scientist F/HOO) and Dr.G.S. Pavwar BSI Dehradun for plant identification. I would like to extend my thanks to Dr.G.S. Mer and Mr. Deepak Joshi from Soil Testing laboratory, Bhowali for helping in soil analysis.

I wish to acknowledge my thanks to Dr. K.K. Pandey (H.O.D.), Dr. Prasoon K. Joshi, Dr. Amita Tiwari and all other faculty members and extended hands of Chemistry Department M.B. Govt. P.G. College, Haldwani for their support during the period of research work.

I express my gratitude to Mr. Sanjay Joshi for their encouragement, affectionate behavior and their valuable suggestions during my plant collection.
I express my thanks to Dr. Girish Kharakwal and Mr. Ram swaroop Verma (C.I.M.A.P. Pantnagar) for their help in lab work during the course of my work.

I express my sincere gratitude to all the members of my family for their constant encouragement, blessings, sacrifice, patience and support without which I could not have completed this degree course successfully.

At last but not the least, I record my sincere thanks to all beloved and respected people who helped me and could not find separate mention.

Department of Chemistry
M.B. Govt. P.G. College
Haldwani (Nainital)

Vineet Kandpal
CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>(i)</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>(iii)</td>
</tr>
<tr>
<td>Chapter I</td>
<td>1-26</td>
</tr>
<tr>
<td>General Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 General Introduction</td>
<td>1-20</td>
</tr>
<tr>
<td>1.1.1 Secondary plant metabolites as potent bioactive agents</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 Phytochemistry</td>
<td>3</td>
</tr>
<tr>
<td>1.1.3 Terpenoids</td>
<td>4</td>
</tr>
<tr>
<td>1.1.4 Chemistry of essential oils</td>
<td>5</td>
</tr>
<tr>
<td>1.1.5 Isoprene rule for the construction of terpenes</td>
<td>6</td>
</tr>
<tr>
<td>1.1.6 Biosynthesis of terpenoids</td>
<td>9</td>
</tr>
<tr>
<td>1.1.7 General introduction of family with selected medicinal and aromatic plants</td>
<td>14</td>
</tr>
<tr>
<td>1.1.8 Economic Importance of Terpenoids</td>
<td>18</td>
</tr>
<tr>
<td>1.1.9 Physicochemical Properties of Soil</td>
<td>19</td>
</tr>
<tr>
<td>References</td>
<td>21-26</td>
</tr>
<tr>
<td>Chapter II</td>
<td>27-64</td>
</tr>
<tr>
<td>Chemical composition of Hyptis suaveolens (L.) poit.</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>27-29</td>
</tr>
<tr>
<td>2.2 Experimental</td>
<td>30-54</td>
</tr>
<tr>
<td>2.2.1 Chemicals and Glassware used</td>
<td>30</td>
</tr>
<tr>
<td>2.2.2 Plant material collection and its identification</td>
<td>30</td>
</tr>
<tr>
<td>2.2.3 Isolation of essential oil</td>
<td>30</td>
</tr>
<tr>
<td>2.2.4 Gas Chromatographic Analysis</td>
<td>30</td>
</tr>
<tr>
<td>2.2.5 Gas Chromatographic-Mass Spectrometric Analysis (GC-MS)</td>
<td>31</td>
</tr>
<tr>
<td>2.2.6 Identification of the compounds</td>
<td>31</td>
</tr>
</tbody>
</table>
Chapter III

Chemical composition of *Anisomeles indica* (L.) Kuuntz.

3.1 Introduction 65-66

3.2 Experimental 67-92
 3.2.1 Chemicals and Glassware used 67
 3.2.2 Plant material collection and its identification: 67
 3.2.3 Isolation of essential oil: 67
 3.2.4 Gas Chromatographic Analysis: 67
 3.2.5 Gas Chromatographic-Mass Spectrometric Analysis (GC-MS) 68
 3.2.6 Identification of the compounds: 68
 3.2.7. Kovat indices: 68

3.3 Result and Discussion 93-96

3.4 Conclusion 97

References 98-102

Chapter IV

Chemical composition of *Chenopodium ambrosiodes* L.

4.1 Introduction 103-105

4.2 Experimental 106-125
 4.2.1 Chemicals and Glassware used 106
 4.2.2 Plant material collection and its identification: 106
 4.2.3 Isolation of essential oil: 106
 4.2.4 Gas Chromatographic Analysis 106
 4.2.5 Gas Chromatographic-Mass Spectrometric Analysis (GC-MS) 107
 4.2.6 Identification of the compounds: 107
 4.2.7 Kovat indices: 107

4.3 Result and Discussion 126-129
Chapter V

Chemical composition of *Selium wallichianum* Raizada & Saxena.

5.1 Introduction 139-141
5.2 Experimental 142-176
 5.2.1 Chemicals and Glassware used 142
 5.2.2 Plant material collection and its identification 142
 5.2.3 Isolation of essential oil 142
 5.2.4 Gas Chromatographic Analysis 142
 5.2.5 Gas Chromatographic-Mass Spectrometric Analysis (GC-MS) 143
 5.2.6 Identification of the compounds 143
 5.2.7 Kovat indices: 143
5.3 Result and Discussion 177-179
5.4 Conclusion 180
References 181-184

Chapter VI

Study of Anti fungal activity of essential oils against various fungi

6.1 Introduction 185-187
6.2 Experimental 188-212
 6.2.1 Chemicals and Glassware used
 6.2.2 Plant materials collection
 6.2.3 Extraction of essential oil
 6.2.4 Preparation of culture medium Composition of Potato Dextrose Agar (PDA) Media
 6.2.5 Plant pathogenic fungi
 6.2.6 Preparation of Stock solution
 6.2.7 In vitro antifungal activity
 6.2.8 Determination of 50% inhibitory concentration (IC50)
 6.2.9 Determination of minimum inhibitory concentration (MIC)
 6.2.10 Statistical analysis
6.3 Result and Discussion 213-218
6.4 Conclusion 219
References 220-223

Chapter VII 225-264
Physico Chemical soil Analysis
7.1 Introduction 225-230
7.2 Experimental 231-251
 7.2.1 Chemicals and Glassware used 231
 7.2.2 Methods and Instruments used 231
 7.2.3 Collection of Soil Samples 232
 7.2.4 Soil Reaction (pH) 233
 7.2.5 Electrical Conductivity (EC) 234
 7.2.6 Soil Texture: Bouyocos hydrometer 236
 7.2.7 Water Holding Capacity 239
 7.2.8 Organic Carbon 240
 7.2.9 Kjeldahl Method for Nitrogen 242
 7.2.10 Phosphorous in Soil: (Olsen’s Method) 244
 7.2.11 Determination Of Potassium On Flame Photometer 246
 7.2.12 Determination of Cu, Zn, Mn, and Fe in Soil by Atomic Absorbtion Spectrophotometer 247
7.3 Result and Discussion 252-257
7.4 Conclusion 258
References 259-264

Summary 265-280

Paper presented in Conferences
Published research papers/ Conferences attended

2. Chemical Composition of Essential Oil from Seeds of Anisomeles indica from Kumaon Foothills, India. (2016) (Vineet Kandpal, Prasoon K. Joshi and Neeta Joshi)

5. Paper Presented
 i) National Conference on Emerging Trends in Chemistry-Biology Interface ETCBI-2011
 ii) International Conference Green Technologies for Environmental Rehabilitation (GTER- 2012).

6. Workshop attended
LIST OF TABLE

<table>
<thead>
<tr>
<th>TABLE No.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>GC-MS data of essential oil of Hyptis suaveolens (L.) Poit during Vegetative Phase</td>
<td>38-42</td>
</tr>
<tr>
<td>2.2</td>
<td>GC-MS data of essential oil of Hyptis suaveolens (L.) Poit during Flowering Phase</td>
<td>43-46</td>
</tr>
<tr>
<td>2.3</td>
<td>GC-MS data of essential oil of Hyptis suaveolens (L.) Poit during Senescence Phase</td>
<td>47-51</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparative essential oil composition of Hyptis suaveolens (L.) Poit</td>
<td>53-54</td>
</tr>
<tr>
<td>3.1</td>
<td>GC-MS data of essential oil of Anisomeles indica during Vegetative Phase</td>
<td>76-77</td>
</tr>
<tr>
<td>3.2</td>
<td>GC-MS data of essential oil of Anisomeles indica during Flowering Phase</td>
<td>78-80</td>
</tr>
<tr>
<td>3.3</td>
<td>GC-MS data of essential oil of Anisomeles indica during Senescence Phase</td>
<td>81-84</td>
</tr>
<tr>
<td>3.4</td>
<td>GC-MS data of essential oil of Anisomeles indica obtained from Seeds</td>
<td>85-88</td>
</tr>
<tr>
<td>3.5</td>
<td>Comparative essential oil composition of Anisomeles indica</td>
<td>89-92</td>
</tr>
<tr>
<td>4.1</td>
<td>GC-MS data of essential oil of Chenopodium ambrosioides L. during Vegetative Phase</td>
<td>114-116</td>
</tr>
<tr>
<td>4.2</td>
<td>GC-MS data of essential oil of Chenopodium ambrosioides L. during Flowering Phase</td>
<td>117-120</td>
</tr>
<tr>
<td>4.3</td>
<td>GC-MS data of essential oil of Chenopodium ambrosioides L. during Senescence phase (Seeds part)</td>
<td>121-122</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparative essential oil composition of Chenopodium ambrosioides L.</td>
<td>123-125</td>
</tr>
</tbody>
</table>
Table No.- 5.1
\[^1\text{H} \text{ NMR and } ^{13}\text{C} \text{ NMR data of Compound SWA (SWR-24) } \]

Table No.- 5.2
GC-MS data of essential oil of *Selenium wallichianum* during Vegetative Phase (Aerial part, Herbaceous stem)

Table No.- 5.3
GC-MS data of essential oil of *Selenium wallichianum* during Vegetative Phase (Underground part, Roots)

Table No.- 5.4
GC-MS data of essential oil of *Selenium wallichianum* during Flowering Phase (Aerial, Inflorescence part)

Table No.- 5.5
GC-MS data of essential oil of *Selenium wallichianum* during Senescence phase (Aerial part, Herbaceous stem)

Table No.- 5.6
GC-MS data of essential oil of *Selenium wallichianum* during Senescence phase (Underground part, Roots)

Table No.- 5.7
Comparative essential oil composition of *Selenium wallichianum*

Table No.- 6.1
Effect of different essential oils on the growth and inhibition (%) of the test pathogen- *Sclerotinia sclerotiorum* causes sclerotinia stem rot on rapeseed-mustard

Table No.- 6.2
Effect of different essential oils on the growth and inhibition (%) of the test pathogen-*Fusarium oxysporum* causes wilt disease on chickpea

Table No.- 6.3
Effect of different essential oils on the growth and inhibition (%) of the test pathogen-*Phytophthora Capsici* causes root rot on chilli.

Table No.- 6.4
Effect of different essential oils on the growth and inhibition (%) of the test pathogen-*Colletotrichum gleosporides* causes anthracnose disease on Sorghum

Table No.- 6.5
Calculate value of IC\(_{50}\) and MIC during Antifungal activity of essential oil against four pathogenic fungi

Table No.- 6.6
Statistical Analysis of Radial growth of *Sclerotinia sclerotiorum* and Percent Inhibition.

Table No.- 6.7
Statistical Analysis of radial growth of *Fusarium oxysporum* and Percent Inhibition
<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8</td>
<td>Statistical Analysis of radial growth of Phytophthora Capsici and Percent Inhibition</td>
<td>201</td>
</tr>
<tr>
<td>6.9</td>
<td>Statistical Analysis of radial growth of Colletotrichum gleosporides and Percent Inhibition</td>
<td>202</td>
</tr>
<tr>
<td>6.10</td>
<td>Table of means and Anova of Sclerotinia sclerotiorum</td>
<td>203</td>
</tr>
<tr>
<td>6.11</td>
<td>Table of means and Anova of Fusarium oxysporum</td>
<td>204</td>
</tr>
<tr>
<td>6.12</td>
<td>Table of means and Anova of Phytophthora capsici</td>
<td>205</td>
</tr>
<tr>
<td>6.13</td>
<td>Table of means and Anova of Colletotrichum gleosporides</td>
<td>206</td>
</tr>
<tr>
<td>7.1</td>
<td>Site of collection of soil samples</td>
<td>232</td>
</tr>
<tr>
<td>7.2</td>
<td>Physicochemical soil Analysis during different harvest season of plant Hyptis suaveolens (L.) Poit grown in Haldwani (Kumaun Region) Uttarakhand</td>
<td>248</td>
</tr>
<tr>
<td>7.3</td>
<td>Physicochemical soil Analysis during different harvest season of plant Anisomeles indica (L) Kuntz grown in Haldwani (Kumaun Region) Uttarakhand</td>
<td>249</td>
</tr>
<tr>
<td>7.4</td>
<td>Physicochemical soil Analysis during different harvest season of plant Chenopodium ambrosioides L. grown in Uttarkashi (Garhwal region) Uttarakhand</td>
<td>250</td>
</tr>
<tr>
<td>7.5</td>
<td>Physicochemical soil Analysis during different harvest season of plant Selinum wallichianum Raizada & Saxena grown in Nainital (Kumaun Region) Uttarakhand</td>
<td>251</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 1.1</td>
<td>Terpenoid biosynthesis</td>
<td>11</td>
</tr>
<tr>
<td>Fig 1.2</td>
<td>Monoterpenoid biosynthesis</td>
<td>12</td>
</tr>
<tr>
<td>Fig 1.3</td>
<td>Sesquiterpenoid biosynthesis</td>
<td>13</td>
</tr>
<tr>
<td>Fig 2.1</td>
<td>Gas Chromatogram of the essential oil of Hyptis suaveolens (Vegetative Phase)</td>
<td>33</td>
</tr>
<tr>
<td>Fig 2.2</td>
<td>Gas Chromatogram of the essential oil of Hyptis suaveolens (Flowering Phase)</td>
<td>34</td>
</tr>
<tr>
<td>Fig 2.3</td>
<td>Gas Chromatogram of the essential oil of Hyptis suaveolens (Senescence Phase)</td>
<td>35</td>
</tr>
<tr>
<td>Fig 2.4</td>
<td>Mass spectrum of major compounds of Hyptis suaveolens</td>
<td>36</td>
</tr>
<tr>
<td>Fig 2.5</td>
<td>Structures of major compounds of Hyptis suaveolens</td>
<td>37</td>
</tr>
<tr>
<td>Fig 3.1</td>
<td>Gas Chromatogram of the essential oil of Anisomeles indica (Vegetative Phase)</td>
<td>70</td>
</tr>
<tr>
<td>Fig 3.2</td>
<td>Gas Chromatogram of the essential oil of Anisomeles indica (Flowering Phase)</td>
<td>71</td>
</tr>
<tr>
<td>Fig 3.3</td>
<td>Gas Chromatogram of the essential oil of Anisomeles indica (Senescence Phase)</td>
<td>72</td>
</tr>
<tr>
<td>Fig 3.4</td>
<td>Gas Chromatogram of the essential oil of Anisomeles indica (Seed part)</td>
<td>73</td>
</tr>
<tr>
<td>Fig 3.5</td>
<td>Mass spectrum of major compounds of Anisomeles indica</td>
<td>74-75</td>
</tr>
<tr>
<td>Fig 3.6</td>
<td>Structures of major compounds of Anisomeles indica</td>
<td>75</td>
</tr>
<tr>
<td>Fig 4.1</td>
<td>Gas Chromatogram of the essential oil of C. ambrosioïdes (Vegetative Phase)</td>
<td>109</td>
</tr>
</tbody>
</table>
Fig 4.2 Gas Chromatogram of the essential oil of *C. ambrosioides* (Flowering Phase) 110
Fig 4.3 Gas Chromatogram of the essential oil of *C. ambrosioides* (Senescence Phase) 111
Fig 4.4 Mass spectrum of major compounds of *C. ambrosioides* 112
Fig 4.5 Structures of major compounds of *C. ambrosioides* 113

Fig 5.1 Gas Chromatogram of the essential oil of *Selinum wallichianum* 146
Vegetative Phase (Aerial part, Herbaceous stem)
Fig 5.2 Gas Chromatogram of the essential oil of *Selinum wallichianum* 147
Vegetative Phase (Underground part, Roots)
Fig 5.3 Gas Chromatogram of the essential oil of *Selinum wallichianum* 148
Flowering Phase (Aerial part, Inflorescence)
Fig 5.4 Gas Chromatogram of the essential oil of *Selinum wallichianum* 149
Senescence phase (Aerial part, Herbaceous stem)
Fig 5.5 Gas Chromatogram of the essential oil of *Selinum wallichianum* 150
Senescence phase (Underground part, Roots)
Fig 5.6 1H NMR of SWA (SWR-24) (Compound Isolated from Underground part, Roots at Senescence Phase) 151
Fig 5.7 Enlarged view of 1H NMR of SWA (SWR-24) (Compound Isolated from Underground part, Roots at Senescence Phase) 152
Fig 5.8 13C NMR of SWA (SWR-24) (Compound Isolated from Underground part, Roots at Senescence Phase) 153
Fig 5.9 Mass spectrum of major compounds of *Selinum wallichianum* 154
Fig 6.1 Calculation of IC$_{50}$ of different fungal pathogens against essential oil of *Hyptis suaveolens* 207-208
Fig 6.2 Calculation of IC$_{50}$ of different fungal pathogens against essential oil of *Chenopodium ambrosioides* 209-210
Fig 6.3 Calculation of IC$_{50}$ of different fungal pathogens against essential oil of *Anisomeles indica* 211-212
Fig 6.4 Effect of essential oil of *Hyptis suaveolens* against *Sclerotinia sclerotiorum*

Fig 6.5 Effect of essential oil of *Chenopodium ambrosioides* against *Sclerotinia sclerotiorum*

Fig 6.6 Effect of essential oil of *Anisomeles indica* against *Sclerotinia sclerotiorum*

Fig 6.7 Effect of Carbendazim 50% WP at different concentration against *Sclerotinia sclerotiorum*

Fig 6.8 Effect of essential oil of *Hyptis suaveolens* against *fusarium oxysporum*

Fig 6.9 Effect of essential oil of *Chenopodium ambrosioides* against *fusarium oxysporum*

Fig 6.10 Effect of essential oil of *Anisomeles indica* against *fusarium oxysporum*

Fig 6.11 Effect of Carbendazim 50% WP at different concentration against *fusarium oxysporum*

Fig 6.12 Effect of essential oil of *Hyptis suaveolens* against *Phytophthora capsici*

Fig 6.13 Effect of essential oil of *Chenopodium ambrosioides* against *Phytophthora capsici*

Fig 6.14 Effect of essential oil of *Anisomeles indica* against *Phytophthora capsici*

Fig 6.15 Effect of Mancozeb 75% WP at different concentration against *Phytophthora capsici*

Fig 6.16 Effect of essential oil of *Hyptis suaveolens* against *Colletotrichum gleosporides*

Fig 6.17 Effect of essential oil of *Chenopodium ambrosioides* against *Colletotrichum gleosporides*

Fig 6.18 Effect of essential oil of *Anisomeles indica* against *Colletotrichum gleosporides*

Fig 6.19 Effect of carbendazim 50% WP at different concentration against *Colletotrichum gleosporides*