Contents

➢ Abbreviations i
➢ General remarks iii
➢ Abstract v

Chapter 1 Synthesis and Bioactivities of Betulinan C and its Analogs 1
 1.1 Introduction 2
 1.1.1 Natural products in drug discovery 2
 1.1.2 Betulinan A, B and C 3
 1.2 Review of Literature 5
 1.2.1 p-Terphenyls 5
 1.2.2 Synthesis and bioactivities of quinones 7
 1.2.3 Bio-film, quorum sensing and its inhibition 10
 1.3 Present Work 13
 1.3.1 Objectives and methodology 13
 1.3.2 Bio-film inhibition activity 14
 1.3.2.1 SEM analysis 14
 1.3.3 Synergetic anti-bacterial activity of betulinan C and its analogs with eugenol isolated from O. tenuiflorum L. 15
 1.4 Result and Discussion 16
 1.5 Conclusion 31
 1.6 Experimental Section 31
 1.7 Spectra 37

References 47

Chapter 2 Synthesis of Farinomalein and its Analogs 51
 2.1 Introduction 52
 2.1.1 Maleimide and bioactivities 52
 2.1.2 Farinomalein A, B, C, D and E 55
 2.2 Review of Literature 57
 2.2.1 Strategies for synthetic of substituted maleimide 57
2.2.2 Miles approach (2010) 61
2.2.3 Aiwale approach (2012) 63
2.2.4 Lahore approach (2014) 64
2.2.5 Stobbe condensation 66
2.2.6 Haval-Argade contrathermodynamic rearrangement 67

2.3 Present Work 68
2.3.1 Objectives and methodology 68
2.3.2 Synergetic anti-bacterial activity of farinomalein analogs with eugenol isolated from *O. tenuiflorum* L. 70

2.4 Result and Discussion 71
2.5 Conclusion 96
2.6 Experimental Section 97
2.7 Spectra 105
References 119

Chapter 3 *Ocimum tenuiflorum* L., Hydrodistillation and Secondary Metabolites 122
3.1 Introduction 123
3.1.2 *O. tenuiflorum* L. 123
3.1.2 Eugenol 124
3.2 Review of Literature 125
3.2.1 *O. tenuiflorum* L., eugenol and its therapeutic activities 125
3.3 Present Work 134
3.3.1 Objectives and methodology 134
3.3.2 Derivatives of eugenol and molinspiration protocol 134
3.3.3 Isolation and characterization of eugenol 135
3.3.4 XCMS protocol and secondary metabolites 135
3.4 Result and Discussion 136
3.5 Conclusion 148
3.6 Experimental Section 149
3.7 Chromatogram 154
References 156