List of Figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic illustration of SPR originated from metal Nanoparticles</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Scheme showing the concept of colorimetric sensing based on change of AuNPs color from red to pink after interaction with the analyte</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Comparison of MNCs sizes with MNPs and atoms</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Schematic diagram showing the effect of sizes in energy levels of metals</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Schematic representation of a chemosensor</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>Schematic diagram showing the components present in the electrochemical sensor</td>
<td>10</td>
</tr>
<tr>
<td>1.7</td>
<td>Structure of biomolecules and ions used in the present study</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>Scheme showing the synthesis of AHMP-AuNPs</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic representation of synthesis of BSA-AuNPs</td>
<td>40</td>
</tr>
<tr>
<td>2.3</td>
<td>Scheme showing the synthesis of FA-AuNPs</td>
<td>40</td>
</tr>
<tr>
<td>2.4</td>
<td>Scheme showing the synthesis of FA-AuNCs</td>
<td>41</td>
</tr>
<tr>
<td>2.5</td>
<td>Synthetic scheme of colloidal BSA-AuNCs</td>
<td>41</td>
</tr>
<tr>
<td>2.6</td>
<td>Direct attachment of BSA-AuNPs on GC electrode through Michaeli’s addition reaction</td>
<td>42</td>
</tr>
<tr>
<td>2.7</td>
<td>Scheme showing the fabrication of FA-AuNPs on GC electrode</td>
<td>43</td>
</tr>
<tr>
<td>2.8</td>
<td>Electroless deposition of Au-CuNPs on GC electrode</td>
<td>44</td>
</tr>
<tr>
<td>2.9</td>
<td>Direct attachment of AuNCs on GC electrode</td>
<td>44</td>
</tr>
</tbody>
</table>
3.1. (A) Absorption spectra obtained for (a) AHMP in water, (b) HAuCl₄ in water and (c) mixture of AHMP and HAuCl₄ and (d) after the addition of NaBH₄ to (c). (B) Stability of AHMP-AuNPs. Inset: (B) freshly prepared (a) and after the six months (b) 51

3.2. HR-TEM images (A, B), zeta potential measurement (C) and XRD pattern of AHMP-AuNPs. Inset(A): SAED pattern of AHMP-AuNPs 52

3.3. UV-vis spectra of AHMP-AuNPs in the presence of Cys in different concentrations (A) (0-1.75 µM) and (B) (0-2.375 µM). Inset: (A) enlarged view of SPR band (a), photographs of (i) AHMP-AuNPs, after the addition of (ii) 1.75 µM Cys (b) and (iii) 2.375 µM Cys 56

3.4. (A) HR-TEM image and (B) zeta potential measurement of AHMP-AuNPs in the presence of Cys 57

3.5. FT-IR spectra obtained for solid samples of (a) Cys and (b) AHMP-AuNPs with Cys 58

3.6. Colorimetric changes of AHMP-AuNPs in the presence of 1.75 µM Cys and the presence of 1000-fold higher concentrations of other amino acids 60

3.7. UV-vis spectra of AHMP-AuNPs in the presence of of thiamine (A) (a-i) (0-1.20 µM) and (B) (0-1.80 µM). Inset: (i) isosbestic point (ii) photographs of (a) AHMP-AuNPs, after the addition of (b) 1.20 µM and (c) 1.80 µM thiamine 63

3.8. (A) HR-TEM image and (B) zeta potential measurement of AHMP-AuNPs in the presence of thiamine 64
3.9. (A) Colorimetric changes of AHMP-AuNPs after the addition of thiamine and 1000-fold higher concentrations of various interferences

4.1. (A) UV-vis spectra of (a) folic acid, (b) addition of HAuCl₄ to folic acid, (c) after the addition of NaBH₄ and (d) addition of NaOH to (b). (B) Before (a) and after 10 h incubation (b) and the corresponding photographs in the presence of ambient light (c, e) and UV light (d, f) (Inset)

4.2. HR-TEM images of FA-AuNPs (A, B) and FA-AuNCs (C, D) recorded at different magnifications

4.3. (A) Emission spectra of FA-AuNCs (a) immediate formation and (b) before and (c) after 10 h incubation. Inset A: corresponding photographs under UV light. (B) Emission spectra of FA-AuNCs at different excitation wavelengths (320-360 nm; each 5 nm excitation)

4.4. The effect of pH on the fluorescence intensity of FA-AuNCs

4.5. (A) Emission spectra of FA-AuNCs in the presence of different concentrations of Ac ion: (a) 0, (b) 0.30, (c) 0.60, (d) 0.90, (e) 1.20, (f) 1.50, (g) 1.80, (h) 2.10, (i) 2.40, (j) 2.70 and (k) 3 µM. (B) Photographs of FA-AuNCs in the presence of (a) 0, (b) 1, (c) 2 and (d) 3 µM Ac ion (top: under ambient light, bottom: under UV light)

4.6. (A) Photoluminescence emission decay of FA-AuNCs in the absence (a) and in the presence of (b) Ac ion, (B) Possible mechanism for the fluorescence quenching of FA-AuNCs in the presence of Ac ion
4.7. (A) Emission spectra of FA-AuNCs in the presence of 3 µM Ac ion and 1 mM of other common interferences including Hg$^{2+}$, Pb$^{2+}$, Mg$^{2+}$, Cd$^{2+}$, Zn$^{2+}$, Ni$^{2+}$, SO$_4^{2-}$, NO$_3^-$, S2, Cl$^-$ and F (B) Corresponding photographs of FA-AuNCs in the presence of Ac ion and other interferences under UV light.

4.8. Confocal fluorescence microscope images of HEK 293 living HeLa cells: Bright-field transmission of FA-AuNCs (A) before incubation and (B) after the incubation (B). The fluorescence image of FA-AuNCs in the absence (C) and presence of Ac ion (D).

4.9. (a) UV-vis and (b) emission spectra of colloidal BSA-AuNCs. Inset: photos of colloidal BSA-AuNCs under (c) ambient and (d) UV light.

4.10. HR-TEM images for colloidal BSA-AuNCs recorded at different magnifications (A-C) and particle size distribution (D). Insets: (B) lattice fringes and (C) SAED pattern of BSA-AuNCs.

4.11. (A) Emission spectra for colloidal BSA-AuNCs at different excitation wavelengths (330-440 nm). (B) Photostability (3D view) of colloidal BSA-AuNCs recorded at $\lambda_{ex}=400$, $\lambda_{em}=663$ nm (each 5 min interval-12 additions).

4.12. Emission spectra of BSA-AuNCs in the presence of different concentrations of TBHQ: (a-s; 0-50 µM, each addition of 2.5 µM). Inset: Relative fluorescence intensity (F/F_0) of BSA-AuNCs at 663 nm versus the concentration of TBHQ. Photographs of BSA-AuNCs in the absence (a) and in the presence of TBHQ (b).
4.13. (A) The PL emission decay of the BSA-AuNCs in the absence (a) and presence (b) of TBHQ. Zeta potential measurements of BSA-AuNCs in the absence (B) and presence (C) of TBHQ

4.14. (A) Photographs of BSA-AuNCs in the presence of TBHQ and other interferences under UV light and (B) bar diagram of the corresponding emission intensity of BSA-AuNCs

5.1. UV-vis spectra obtained for (a) bare AuNPs and (b) BSA-AuNPs

5.2. HR-TEM images for (a) and (b) bare AuNPs and (c) and (d) BSA-AuNPs with different magnifications (Insets: (c) showing lattice fringes and (d) SAED pattern of BSA-AuNPs)

5.3. (A) SEM image, (B) EDS analysis, (C) XRD pattern and (D) DRS of BSA-AuNPs modified GC substrate

5.4. XPS (a) survey spectra of (i) bare and (ii) BSA-AuNPs modified GC substrates and (b-d) deconvoluted spectra of (b) Au4f, (c) N1s and (d) C1s regions of BSA-AuNPs modified GC substrate

5.5. (A) CVs obtained for (a) bare GC, (b) GC/BSA, (c) GC/BSA-AuNPs and (d) GC/bare-AuNPs modified electrodes in 0.2 M PB solution (pH 7.2) containing 1 mM K3[Fe(CN)6] and (B) BSA-AuNPs modified electrodes in 0.2 M PB solution (pH 7.2) at a scan rate of 50 mV s⁻¹ prepared by immersing GC electrode in BSA-AuNPs for (a) 4, (b) 6, (c) 8 and (d) 10 h
5.6. (A) CVs obtained for GC/BSA-AuNPs electrode at pH 4-12 and (B) Continuous CVs (5 cycles) recorded for GC/BSA-AuNPs electrode in 0.2 M PB solution (pH 7.2) at a scan rate of 50 mV s⁻¹.

5.7. LSVs obtained for 0.5 mM NaNO₂ at (A) bare GC (b) 1ˢᵗ and (b') after 5 cycles, GC/bare AuNPs (a) 1ˢᵗ and (a') after 5 cycles and GC/BSA-AuNPs electrodes (m) 1ˢᵗ and (m') after 5 cycles at a scan rate of 50 mV s⁻¹ and different scan rates (10-100 mV s⁻¹) in 0.2 M PB solution (pH 7.2) at GC/BSA-AuNPs electrode. Inset B: plot of the peak current vs. square root of scan rate.

5.8. (A) DPVs obtained for the increment of 5 µM each NaNO₂ (a = 0; b-p = 5-75 µM) and (B) amperometric i-t curve for the determination of nitrite ion at GC/BSA-AuNPs electrode in 0.2 M PB solution (pH 7.2). Each addition increases the concentration of (a) 10, (b) 30, (c) 50, (d) 100, (e) 300, (f) 500 and (g) 1000 nM NaNO₂ (50 s interval). Insets: plot of current vs. concentration of nitrite ion.

5.9. (A) Amperometric i-t curve for the determination of (a) 50 nM nitrite ion in the presence of 200 µM each (b) Na⁺, (c) K⁺, (d) NH₄⁺, (e) Cu²⁺, (f) NO₃⁻, (g) CH₃COO⁻, (h) F⁻, (i) SO₄²⁻, (j) glucose, (k) uric acid, (l) ascorbic acid and (m) hydrazine and (B) amperometric i-t curve obtained for water sample and after spiked with different concentrations of commercial nitrite ion at GC/BSA-AuNPs electrode in 0.2 M PB solution (pH 7.2) at 50 s interval.

5.10. (A) UV-vis spectrum and HR-TEM images (B and C) of FA-AuNPs recorded at different magnifications. (D) EDS
analysis of colloidal FA-AuNPs. Inset C: SAED pattern of colloidal FA-AuNPs

5.11. SEM images of (A) bare and (B) FA-AuNPs modified GC substrates and the corresponding EDS analysis (A’ and B’)

5.12. XPS of FA-AuNPs on GC substrate: Deconvoluted spectra for (A) Au 4f, (B) N1s and (C) C1s regions

5.13. (A) CVs obtained for (a) bare, (b) HDA and (c) HDA/FA-AuNPs modified electrode in 0.2 M PBS (pH 7.2) containing 1 mM [Fe(CN)₆] and (B) stability cycles at GCE/HDA/FA-AuNPs at a scan rate of 50 mV s⁻¹ (solid: 1ˢᵗ and dotted: 5ᵗʰ cycles)

5.14. CVs obtained for 0.5 mM HP at (a) bare GC and (b) GC/HDA/FA-AuNPs electrodes at a sweep rate of 50 mV s⁻¹. (B) CVs recorded for the reduction of HP at sweep rates from 10-100 mV s⁻¹ at GC/HDA/FA-AuNPs in 0.2 M PB solution (pH 7.2). Inset B: plot of the peak current vs. square root of scan rate

5.15. DPVs obtained for the increment of 10 µM each HP in 0.2 M PBS (pH 7.2) at GCE/HDA/FA-AuNPs. Inset: plot of the concentration of HP vs. current

5.16. (A) Amperometric i-t curve for the determination of HP at GC/HDA/FA-AuNPs electrode in 0.2 M PBS (pH 7.2). Each addition increases 5 µM HP. (B) Each addition increases the concentration of (a) 500 nM, (b) 1, (c) 2, (d) 5, (e) 10, (f) 20, (g) 40, (h) 60, (i) 75, (j) 100 µM, (k) 0.2 and (l) 0.25 mM HP (50 s interval) Inset: Calibration plot of current vs. concentration of HP
5.17. (A) Interference study for (a) HP (5 µM), (b-e) Glucose, UA, AA, Dop and (f-k) Na\(^+\), K\(^+\), Cl\(^-\), NO\(_3^-\), SO\(_4^{2-}\), Fe\(^{2+}\), Zn\(^{2+}\) and Ni\(^{2+}\) (10 mM) (50 s interval) and (B) DPVs obtained for (a) human urine sample (b) after the addition of 5 µM HP to human urine samples at GC/HDA/FA-AuNPs electrode in 0.2 M PB solution (pH 7.2).

5.18. CV obtained for 0.5 mM HP at (a) bare and (b) BSA-AuNPs GC electrode in 0.2 M PB solution (pH 7.2) at a scan rate of 50 mV s\(^{-1}\)

5.19. LSVs obtained for 0.5 mM NaNO\(_2\) at (a) bare GC and GC/HDA/FA-AuNPs electrodes in 0.2 M PB solution (pH 7.2) at a scan rate of 50 mV s\(^{-1}\)

6.1. SEM images of BSA-AuNCs modified GC plate recorded at different magnifications (A-C) and (D) particle size distribution

6.2. (A) EDS analysis and (B) DRS of BSA-AuNCs modified GC substrate

6.3. XPS of GC/BSA-AuNCs substrate: (A) survey spectrum, deconvoluted spectra of (B) Au4f, (C) N1s and (D) C1s regions

6.4. CVs obtained for (A) GC/BSA-AuNCs and GC/FA-AuNCs electrodes in 0.2 M PB (pH 7.2) solution at a scan rate of 50 mV s\(^{-1}\) (1\(^{st}\) cycle (a) and 5\(^{th}\) cycles (a')).

6.5. (A) Nyquist, (B) Bode amplitude and (C) Bode-phase angle plots for (a) bare GC, (b) GC/AuNPs and (c) GC/AuNCs electrodes in 1 mM K\(_3[Fe(CN)_{6}]\) containing 0.2 M PB solution (pH 7.2) at scanning frequencies from 0.01 to
100000 Hz. Inset (A): Equivalent electrical circuit used for fitting the impedance spectra

6.6. CVs obtained for 0.5 mM HP at (b) bare GC, (c) BSA-AuNCs and (d) FA-AuNCs modified GC electrodes in 0.2 M PB solution (pH 7.2) at a scan rate of 50 mV s⁻¹. (a) Bare GC electrode in the absence of HP

6.7. (A) CVs obtained for 0.5 mM HP at different scan rates (10-120 mV s⁻¹) and (B) DPVs obtained for the increment of 5 µM each HP in 0.2 M PB (pH 7.2) solution at GC/BSA-AuNCs electrodes. Insets: Plot of the peak current vs. square root of scan rate (A) and plot of current vs. concentration of HP (B)

6.8. Amperometric i-t curve for the determination of HP at GCE/BSA-AuNCs in 0.2 M PB (pH 7.2) solution at 50 s interval. (A) Each addition increases the concentration of 500 nM of HP and (B) each addition increases the concentration of (a) 50, (b) 100, (c) 250, (d) 500, (e) 750, (f) 1000 nM, (g) 2.0, (h) 5.0, (i) 7.5 and (j) 10 µM HP. Insets: Plots for current versus concentration of HP (A and B)

6.9. (A) Amperometric determination of HP in the presence of interferents. (a) 0.5 µM HP, 0.5 mM each (b-d) UA, glucose, AA and (e-g) Na⁺, Zn²⁺ and Ni²⁺ and (h-j) Cl⁻, NO₃⁻ and SO₄²⁻. (B) DPVs obtained for (a) human blood serum and after the addition of (b) 10 and (c) 20 µM HP to human blood serum sample at GC/BSA-AuNCs electrode in 0.2 M PB (pH 7.2) solution

6.10 LSVs obtained for (a) absence and (b) presence of 0.5 mM NaNO₂ at GC/HDA/FA-AuNCs electrodes in 0.2 M PB solution (pH 7.2) at a scan rate of 50 mVs⁻¹
6.11 LSVs obtained for (a) absence and (b) presence of 0.5 mM NaNO₂ at GC/BSA-AuNCs electrodes in 0.2 M PB solution (pH 7.2) at a scan rate of 50 mVs⁻¹

7.1. UV-vis spectra obtained for (a) HAuCl₄ solution, (b) HAuCl₄ + hydrazine and (c) electrolessly deposited AuNPs on ITO electrode

7.2. SEM images obtained for (a) AuNPs and (b-e) Au-CuNPs modified substrates at different deposition times of (b) 2, (c) 3, (d) 4 and (e) 5 h. (f) Au-CuNPs (5 h) at higher magnification

7.3. SEM images obtained for (a) AuNPs and (b) Au-CuNPs modified GC substrates with the corresponding EDS analysis

7.4. SEM mapping images obtained for (a) AuNPs and (b) Au-CuNPs modified substrates

7.5. (A) XPS survey spectrum obtained for Au-CuNPs modified substrate and deconvoluted XPS spectra obtained for (B) Au4f, (C) Cu2p regions of Au-CuNPs modified substrates and (D) XRD pattern obtained for Au-CuNPs modified substrate (*-planes are corresponding to ITO substrate)

7.6. EDS analysis obtained for (A) AuNPs and (B) Au-CuNPs modified substrates

7.7. (A) CVs obtained for GC/AuNPs electrode at different Au-deposition times of (a) 30, (b) 45 and (c) 60 min in 0.2 M PB solution (pH 7.2) at a scan rate of 50 mV s⁻¹ and (B) (a) GC/AuNPs and (b) GC/Au-CuNPs electrodes in 0.5 M KOH at a scan rate of 50 mV s⁻¹
7.8. CVs obtained for dioxygen reduction at (a) bare GC, (b) GC/AuNPs and (c) GC/Au-CuNPs electrodes in O$_2$ saturated 0.5 M KOH at a scan rate of 50 mV s$^{-1}$ (dotted line : after five cycles)

7.9. (A) CVs obtained for dioxygen reduction at GC/Au-CuNPs electrodes at different Cu-deposition times of (a) 2, (b) 3, (d) 4 and (c) 5 h in O$_2$ saturated at a scan rate of 50 mV s$^{-1}$ (B) O$_2$ saturated 0.5 M KOH at different scan rates of 20-100 mV s$^{-1}$

7.10. (A) UV-vis spectrum, (B, C) HR-TEM images of colloidal FA-AuNPs recorded at different magnifications and (D) SEM image of FA-AuNPs modified GC substrate. Inset C: SAED pattern of FA-AuNPs

7.11. SEM images obtained for Co deposited on FA-AuNPs modified ITO substrate at different applied potentials: (A) -0.40, (B) -0.50, (C) -0.60 and (D) -0.70 V for 600 s in 0.1 M H$_2$SO$_4$

7.12. SEM images obtained of Co deposited on FA-AuNPs modified ITO substrate at different time: (A) 400, (B) 500, (C) 600 and (D) 700 s at an applied potential of -0.50 V in 0.1 M H$_2$SO$_4$

7.13. SEM images obtained for Au-Co recorded at different magnifications (a-d) at an applied potential of -0.50 V at 600 s in 0.1 M H$_2$SO$_4$

7.14. SEM images of Co deposited on (A) bare and (B) FA-AuNPs modified ITO substrates at an applied potential of -0.50 V for 600 s in 0.1 M H$_2$SO$_4$.
7.15. SEM images of (A) ITO/Au-Co and (B) GC/Au-Co substrate at an potential of -0.50 V for 600 s in 0.1 M H₂SO₄ 184

7.16. EDS analysis of (A) GC/FA-AuNPs, (B) GC/Au-Co (C) line scanning analysis and XRD pattern obtained for GC/Au-Co substrate 186

7.17. XPS of GC/Au-CoMPs substrate: (A) survey spectrum and deconvoluted spectra of (B) Au4f and (C) Co2p regions 187

7.18. (A) Nyquist, (B) Bode amplitude and (C) Bode-phase angle plots for (a) bare GC (b) GC/HDA, (c) GC/HDA/AuNPs and (d) GC/Au-Co electrode in 1 mM K₃[Fe(CN)₆] containing 0.2 M PB solution (pH 7.2) at scanning frequencies from 0.01 to 100000 Hz. Inset (A): Equivalent electrical circuit used for fitting the impedance spectra 189

7.19. (I) CV obtained for GC/Au-Co electrode at a scan rate of 50 mV s⁻¹ and (II) different scan rates (10-120 mV/s) at GC/Au-Co electrode in 0.1 M H₂SO₄ at. Insets: (I) CVs obtained for only (A) Co region and (B) Au region and (II) plot of anodic peak current vs. scan rate 192

7.20. (A) CVs obtained for dioxygen reduction at (a) bare, (b) GC/FA-AuNPs, (c) only GC/Co and (d) GC/Au-Co electrodes (onset potential marked as arrow) and (B) dioxygen reduction at GC/Au-Co electrode in 0.1 M H₂SO₄ at a scan rate of 50 mV s⁻¹. Co deposited at: (a) -0.60, (b) -0.50 and (c) -0.40 V at 600 s 194