DECLARATION

I declare that the thesis entitled “Studies on the Efficiency of Organic Waste Pre-Composting by Microbial Consortium Followed by Vermicomposting By Lampito mauritii (Kinberg)” submitted by me for the degree of Doctor of Philosophy (Ph.D.) is the record of work carried out by me during the period from 2013 to 2017 under the guidance of Dr. S. Vincent and has not formed the basis for the award of any Degree, Diploma, Associateship, Fellowship, Titles in this University or any other University or other similar institution of Higher Learning.
ACKNOWLEDGEMENTS

Without God, I am nothing, from the depth of my heart my endless thanks to Lord Almighty for all the blessings he has showered on me. It was he who began this work, gave me timely intuitions, walked along with me throughout the research work and enabled me to complete it successfully.

First and foremost I would like to express my deepest gratitude and indebtedness to my guide, mentor and research advisor, Dr. S. Vincent, Dean of Research, Loyola College for his excellent guidance, patience, caring and providing me an excellent atmosphere to do my research. His constant support, inspiration and guidance have been always precious to me to plunge on the tasks. I profusely thank him for his affection, encouragement, rendering the valuable suggestions and fruitful discussions that made significant contribution to make this
thesis feasible. I am also thankful to him for providing me an opportunity to learn through letting me exposed to diversified working environment, which has opened a new horizon to my future career. From him, I learned not only the subjects but also the maturity, helping mentality and organizing capacity. His trust has been inspiring to me in both research work and personal life. Just the words wouldn’t be sufficient to place on record in expressing my gratitude for him.

I humbly offer my sincere thanks to our Rev. Fr. Jayapathy Francis, SJ, Rector, Loyola College, Chennai for his kindness, for valuable suggestion and he always helped me whenever I needed support in my research and I also thank Rev. Dr. S. Lazar, SJ, Secretary and Correspondent, Loyola College, Chennai.

I express my deep gratitude to Rev. Dr. M. Arockia Samy Xavier, SJ, Principal, Loyola College, and Chennai for allowing me to carry out research and providing with the required facilities, and also I thank former Principal Rev. Dr. G. Joseph Antony Samy SJ.

I take this opportunity to sincerely acknowledge the Dr. J. Mary Vimala Kumari Kalaíarasi, Head of the Department of Advanced Zoology & Biotechnology Loyola College, and Chennai for the great support and staff members, Advanced Zoology & Biotechnology Loyola College, Chennai who have been helpful in innumerable ways during my work.

It is my privilege to place on record my gratitude my doctoral committee members, Dr. Albin T. Fleming, Associate Professor & Former HOD Loyola College, Chennai and Dr. Perinbam, Associate Professor, Nandanam College, Chennai for their inevitable support, timely help and encouragement.

I express my sincere gratitude Dr. S. Sivasubramanian, Scientist, my well-wisher for his valuable advice that he has extended for my thesis. I owe my deepest gratitude to
Mrs. Nisha Vincent, for offering moral support and encouragement.

I feel it my duty to express my sincere and heartfelt thanks to Co-ordinator Dr. Bernad D’ Sami (LISSTAR), for his incessant support, encouragement, guidance and advice that made this dissertation possible.

I will be failing in my duty if I am not thankful and have deep sense of gratitude for my beloved brother Fr. Charles Babu MSC, and my uncle Fr. Jesudass for their incessant encouragement, support and spiritual guidance. Without which I could not have completed my research and their valuable guidance, precious suggestions, timely discussions and constant supervision helped me a lot through the research and course.

I owe special thanks to the Loyola Society (LS) Mr. Mohan Raj, (Rector PA), Dr. Thomas (PRO), Mathew John (HR), Miss. Shromi for their greatest support. I would be ungrateful if I do not acknowledge the help and encouragement from Bro. Antony, Principal, Montfort Matric School, Santhome,Chennai, Dr. A. Yesu Kalandhi Department of commerce, Loyola College, Chennai my well-wisher for their valuable advice that they have extended for my thesis.

This work would not have been possible without the timely help and motherly care and love, bestowed on me by Mr. Suresh, Mr. John, Mrs. Chithra and Mr. Santhosejose, they were always been caring enough to make my work comfortable, in spite of their busy schedule.

I wish to extend my thanks to seniors Dr. Dinesh Kumar, Mr. Santosh Kumar, Mr. Sundaresan, Mrs. Prabha, Mr. Nallamuthu, Ms. Victoria, Mrs. Akhila, Mr. Vinoth, and other PhD scholars of LIFE, for their support.
I acknowledge the valuable contribution of Mrs. Anitha, Mr. Sukumaran, Mrs. Lakshmi, Mr. Paul, Mrs. Catherine, and other non-teaching staff members of the institute for their assistance and timely help.

I thank Ms. J. Nancy, Mrs. Amala Preethi for their friendly care and affection. I am forever grateful to my staff members Mr. Victor, Mr. Ahilan, Mrs. Jeevanti, Mr. Packiya Raj, Mr. Lourduh Samy for their invaluable cooperation and support.

No research project can be completed without the motivations, encouragement and help, which we receive from different sources overtly and covertly. It is not possible to acknowledge all these sources individually; I take this opportunity to express my gratitude to everyone who has contributed to my completion of this thesis.

This piece of research would not have seen the light of the day without the blessing of my family members for their constant love, continuous support, affection and encouragement have always been a source of strength to me. I wish to express my deep sense of gratitude to my dad Mr. Visuvasam (Lt.) and my beloved mom Mrs. Lilly for her support, trust, patience and blessings that led me to successfully complete my doctoral research. Indebted thanks to my lovely sister Sr. Angela, my brother and my sister-in-law Raja–Arasi.

-- Motcha Rakkini V
Dedicated to My beloved Mom

&
Uncle
INTRODUCTION

1.1 Introduction

1.1.1 Definition of organic waste

1.2 Studies on organic waste

1.3 Pre-composting

1.3.1 Pre-composting by microbial consortia

1.3.2 Microorganisms used in composting

1.3.3 Role of microbes in organic waste recycling

1.3.4 Types of microbes used for composting

1.3.4.1 Anaerobic bacteria

1.3.4.2 Pseudomonas fluorescens

1.3.4.3 Actinomycetes

1.3.4.4 Trichoderma viride

1.3.5 Microbial diversity in soil

1.4 Vermicomposting

1.5 Overview on Lampito mauritii (kinberg)

1.5.1 Earthworm species in India

1.5.2 Earthworms used in vermiculture

1.5.3 Significance of Lampito mauritii

1.5.4 Cattle waste

1.5.5 Effects of earthworms on soil microorganisms

1.5.6 Physical effects of earthworms on soils

1.5.7 Significance of vermiculture and vermicomposting

1.5.8 Earthworms and their interactions with microbes in soil

1.6 SOURCES OF ORGANIC WASTES
<table>
<thead>
<tr>
<th>1.6.1</th>
<th>Bio-processing of organic wastes</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6.1.1</td>
<td>Anaerobic digestion</td>
<td>20</td>
</tr>
<tr>
<td>1.6.1.2</td>
<td>Composting</td>
<td>20</td>
</tr>
<tr>
<td>1.6.1.3</td>
<td>Aerobic composting</td>
<td>21</td>
</tr>
<tr>
<td>1.6.1.4</td>
<td>Anaerobic composting</td>
<td>21</td>
</tr>
<tr>
<td>1.7</td>
<td>Objectives</td>
<td>22</td>
</tr>
<tr>
<td>1.8</td>
<td>Chapterization scheme</td>
<td>22</td>
</tr>
<tr>
<td>1.9</td>
<td>Summary</td>
<td>23</td>
</tr>
</tbody>
</table>

REVIEW OF LITERATURE

2.1	Solid Garbage treatment: issues and challenges	24
2.2	Composting	25
2.3	Substrates for composting	26
2.4	Importance of vermicomposting	27
2.5	Agricultural waste resources	28
2.6	Vermicomposting technology	30
2.7	Vermicomposts and characteristics	31
2.8	Managing market waste through vermicomposting	33
2.9	Procedure for vermicomposting	35
2.10	Disposal and treatment	35
2.11	Vermicomposting by *E. eugeniae*	38
2.12	Treating bio-degradable wastes	39
2.13	Benefits of vermicomposting	42
2.14	Vermicomposting of organic wastes and its usefulness	45
2.15	Vermicompost and beneficial microflora	48
2.16	Summary	49

RESEARCH METHODOLOGY

3.1	Introduction	50
3.2	Earthworms in organic waste management	51
3.3	Survey in Koyambedu market and Madhavaram poultry farm area	52
3.4 Materials
3.5 Requirements
3.6 Earthworms
3.7 Selection of Earthworms
3.8 Vermicomposting by *Lampito mauritii*
3.9 Vermicompost by *Eisenia foetida*
3.10 Vermicompost by *Eudrilus eugeniae*
3.11 Biology of *Lampito mauritii* (Kinberg)
 3.11.1 Distribution
 3.11.2 Habit and habitats
 3.11.3 Morphology and growth
3.12 Biology of *Eudrilus eugeniae* (Kinberg)
 3.12.1 Distribution
 3.12.2 Habit and habitats
 3.12.3 Morphology and growth
3.13 Biology of *Eisenia foetida* (Kinberg)
 3.13.1 Habit and Habitats
 3.13.2 Morphology and Growth
3.14 Maintenance of adult earthworms
3.15 Decomposition
3.16 Preparation of vermibed–Set 1
3.17 Preparation of vermibed–Set 2
3.18 Preparation of vermibed–Set 3
3.19 Maintenance of vermibed
3.20 Protection of earthworm
3.21 Collection of vermicompost for sample analysis
3.22 Harvesting of vermicomposts
3.23 Preparation of vermicompost sample for analysis
3.24 Physicochemical analysis
3.24.1 Methods used for different parameters 63
3.24.2 Color and appearance 63
3.24.3 Moisture 63
3.24.4 Temperature 64
3.24.5 Determination of pH 64
 3.24.5.1 Reagents 65
 3.24.5.2 Procedure 65
 3.24.5.3 Ratings of pH level in soil 65
3.24.6 Determination of Electrical Conductivity (EC) 65
 3.24.6.1 Procedure 66
 3.24.6.2 Ratings of EC level in soil 66
3.24.7 Estimation of Organic Carbon (OC) 66
 3.24.7.1 Principle 67
 3.24.7.2 Reagents 67
 3.24.7.3 Procedure 67
 3.24.7.4 Calculation 68
 3.24.7.5 Ratings of OC level in soil 68
3.24.8 Estimation of Total Nitrogen (TN) 68
 3.24.8.1 Principle 69
 3.24.8.2 Reagents 69
 3.24.8.3 Procedure 69
 3.24.8.4 Distillation 70
 3.24.8.5 Calculation 70
3.24.9 Estimation of Total Phosphorus (TP) 71
 3.24.9.1 Principle 71
 3.24.9.2 Reagents 71
 3.24.9.3 Procedure 71
 3.24.9.4 Calculation 73
3.24.10 Estimation of Total Potassium (TK) 73
3.24.10.1 Principle 73
3.24.10.2 Procedure 74
3.24.10.3 Calculation 74

3.25 Analysis and estimation of micronutrients and heavy metals 75
3.25.1 Principle 75
3.25.2 Reagents 76
3.25.3 Procedure 76

3.26 Microbial analysis 76
3.26.1 Quantitative analysis of microbes 76
3.26.2 Determination of total microbial population 77
3.26.3 Composition of media used for fungal growth 77
3.26.4 Composition of media used for bacterial growth 78
3.26.5 Composition of medium used for actinomycetes growth 79
3.27 Selection of L. mauritii 79

3.28 Physical analysis 80
3.28.1 Calculation 80
3.28.2 Selection of crop – Okra (Ladies finger) 80
3.28.3 Growth and yield factors 81
3.28.4 Plant height 81
3.28.5 Number of leaves 81
3.28.6 Number of seeds per pod 81
3.28.7 Estimation of total Chlorophyll Content 81
3.28.8 Estimation of protein content 82
3.28.8.1 Reagent for Lowry Method 82
3.28.9 Estimation of total carbohydrate content 83
3.28.9.1 Calculation 83
3.29 statistical analysis 84

4 RESULTS

4.1 Survey in organic waste management 85
4.1.1 The following observations are made based on the questionnaire inputs:

4.2 Physicochemical assessments of vermicomposts

4.2.1 pH

4.2.2 Electrical Conductivity

4.2.3 Nitrogen (N %)

4.2.4 Phosphorus (P %)

4.2.5 Potassium (K %)

4.2.6 Organic Carbon Content

4.2.7 Moisture content

4.3 Determination of physical and chemical profiles of vermicomposts

4.3.1 Physical profiles

4.3.1.1 Qualitative observations

4.3.1.2 pH

4.3.1.3 Temperature

4.3.1.4 Moisture content

4.3.1.5 Electrical Conductivity

4.3.2

4.3.2.1 Organic carbon and nitrogen content

4.3.2.2 Total calcium (Ca %)

4.3.2.3 Total magnesium (Mg %)

4.3.2.4 Total sodium content (Na %)

4.3.2.5 Total sulphur content (S %)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2.6</td>
<td>Phosphorus (P %) and Potassium(K %) content</td>
<td>101</td>
</tr>
<tr>
<td>4.4</td>
<td>Physicochemical features of vermicompost</td>
<td>109</td>
</tr>
<tr>
<td>4.4.1</td>
<td>pH</td>
<td>109</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Electrical Conductivity (EC)</td>
<td>109</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Organic carbon content (C %) and nitrogen content (N %)</td>
<td>110</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Phosphorus (P %) and potassium (K %) Content</td>
<td>111</td>
</tr>
<tr>
<td>4.5</td>
<td>Microbiological community analysis of the vermicompost treatments</td>
<td>120</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Microbial population in three different vermicompost treatments</td>
<td>120</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Identification of microbes in different vermicompost systems</td>
<td>122</td>
</tr>
<tr>
<td>4.6</td>
<td>Growth rate analysis and heavy metal assessments</td>
<td>143</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Comparative analysis of growth rate of three different earthworm species</td>
<td>143</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Reduction of bioavailability of heavy metals</td>
<td>144</td>
</tr>
<tr>
<td>4.6.2.1</td>
<td>Arsenic</td>
<td>145</td>
</tr>
<tr>
<td>4.6.2.2</td>
<td>Cadmium</td>
<td>145</td>
</tr>
<tr>
<td>4.6.2.3</td>
<td>Copper</td>
<td>145</td>
</tr>
<tr>
<td>4.6.2.4</td>
<td>Iron</td>
<td>146</td>
</tr>
<tr>
<td>4.6.2.5</td>
<td>Lead</td>
<td>146</td>
</tr>
<tr>
<td>4.6.2.6</td>
<td>Zinc</td>
<td>146</td>
</tr>
<tr>
<td>4.7</td>
<td>Evaluation of vermicompost for its field applications</td>
<td>155</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Plant height</td>
<td>155</td>
</tr>
</tbody>
</table>
4.7.2 Number of leaves 155
4.7.3 Number of branches 156
4.7.4 Quantity of fruits and fruit size 156
4.7.5 Chlorophyll, protein and carbohydrate contents 157

5 DISCUSSION

5.1 Types of wastes and waste processing systems in urban community settings 163

5.2 Factors affecting vermicomposting 165
5.2.1 pH 166
5.2.2 Electrical Conductivity 166
5.2.3 Nitrogen (N %) 166
5.2.4 Phosphorus (P %) 166
5.2.5 Potassium (K %) 167
5.2.6 Organic carbon content 168
5.2.7 Moisture content 168

5.3 Physical parameter profiles during the vermicomposting process 168
5.3.1 Physical profiles 168
5.3.1.1 pH 168
5.3.1.2 Temperature 168
5.3.1.3 Electrical Conductivity(EC) 169
5.3.2 Chemical profiles 170
5.3.2.1 Organic carbon and nitrogen contents 170
5.3.2.2 Total Calcium (Ca %) 170
5.3.2.3 Total magnesium (Mg %) 171
5.3.2.4 Total sodium content (Na%) 171
5.3.2.5 Total sulphur content (S%) 171
5.3.2.6 Phosphorus (P %) and potassium Content (K %) 172

5.4 Physico-chemical features of vermicomposts 172
5.4.1 pH 172
5.4.2 Electrical Conductivity (EC) 172
5.4.3 Organic carbon content (C %) and nitrogen content (N %) 173
5.4.4 Phosphorus (P%) and potassium (K%) content 173

5.5 Microflora in vermicast systems 174
5.5.1 Identification of microbes in different vermicompost systems 174

5.6 Factors involved in growth rate of earthworm species 175

5.7 Heavy metal assessment 176

5.8 Evaluation of vermicast manure and its impact on plant growth 177
5.8.1 Plant height, leaf and branch numbers 177
5.8.2 Fruit yields and growth characteristics 178
5.8.3 Chlorophyll, protein and carbohydrate contents in plants 179

6 SUMMARY
6.1 Summary 181

7 BIBILIOGRAPHY i to xii
<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TABLES</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Questionnaires used in this survey</td>
<td>85</td>
</tr>
<tr>
<td>4.2</td>
<td>Change in pH levels in three different vermicomposts during the experimental period.</td>
<td>92</td>
</tr>
<tr>
<td>4.3</td>
<td>Electrical conductivity levels of different vermicomposts during the experimental period.</td>
<td>92</td>
</tr>
<tr>
<td>4.4</td>
<td>Nitrogen levels of different vermicomposts during the experimental period.</td>
<td>93</td>
</tr>
<tr>
<td>4.5</td>
<td>Phosphorus levels of different vermicomposts during the experimental period.</td>
<td>93</td>
</tr>
</tbody>
</table>
4.6 Potassium levels of different vermicomposts during the experimental period.

4.7 Organic carbon content of different vermicomposts during the experimental period.

4.8 Moisture content of different vermicomposts during the experimental period.

4.9 Estimation of physical profiles (PH, Temperature, Moisture content, Electrical conductivity) of vermicompost derived from different wastes.

4.10 Table 4.10 Estimation of Total Carbon content (C %), Total Nitrogen Content (N %), Total Calcium Content (Ca %), Total Magnesium Content (Mg %), Total Sodium Content (Na %), Total Sulphur (S %), Phosphorus (P %), and Total Potassium Content (K %) of vermicompost derived from different wastes.

4.11 pH profiles of different vermicompost experiments.

4.12 EC profiles of vermicompost experiments using different wastes.

4.13 Total Nitrogen content (N %) of vermicompost experiments during the experimental period.

4.14 Organic carbon contents of different vermicompost processes during the experimental period.

4.15 Total Phosphorous content (P %) of different vermicompost processes during the experimental period.

4.16 Total Potassium content (K %) of different vermicompost processes during the experimental period.

4.17 Identification of microorganisms in compost derived from vegetable + animal wastes.

4.18 Identification of microorganism in compost derived from vegetable wastes.

4.19 Identification of microbes in compost derived from animal.
wastes.

4.20A Microbial population derived from three different sources
4.20B Microbial population derived from the three different sources
4.20C Microbial population derived from the three different sources

4.21 Growth rate of different species of earthworm during the experimental period in terms of length (cm)
4.22 Growth rate of different species of earthworm during the experimental period in terms of weight (g)

4.23 Reduction of total Copper content (mg Kg$^{-1}$) in different vermicompost treatments using *L. mauritii* during the experimental period

4.24 Reduction of total Cadmium content (mg Kg$^{-1}$) in different vermicompost treatments using *L. mauritii* during the experimental period

4.25 Reduction of total Arsenic content (mg Kg$^{-1}$) in different vermicompost treatments using *L. mauritii* during the experimental period

4.26 Reduction of total Lead content (mg Kg$^{-1}$) in different vermicompost treatments using *L. mauritii* during the experimental period

4.27 Reduction of total Zinc content (mg Kg$^{-1}$) in different vermicompost treatments using *L. mauritii* during the experimental period

4.28 Reduction of total Iron content (mg Kg$^{-1}$) in different vermicompost treatments using *L. mauritii* during the experimental period

4.29 Effect of vermicomposts derived from different wastes on plant height
4.30 Effect of vermicomposts on plant leaves during the experimental period
4.31 Effect of vermicomposts on the number of branches 160
4.32 Effect of vermicomposts on fruit yield, fruit size and growth charts 161
4.33 Chlorophyll (mg/g), protein (g) and carbohydrate (g) contents of plants derived from different vermicomposts 162

LIST OF FIGURES

FIG. FIGURES

4.1 Survey in organic waste management
4.2 Change in pH levels in three different vermicomposts during the experimental period.
4.3 Electrical conductivity levels of different vermicomposts
during the experimental period.

4.4 Nitrogen levels of different vermicomposts during the experimental period.

4.5 Phosphorus levels of different vermicomposts during the experimental period.

4.6 Potassium levels of different vermicomposts during the experimental period.

4.7 Organic carbon content (C %) of different vermicomposts during the experimental period.

4.8 Moisture content (%) of different vermicomposts during the experimental period.

4.9 pH levels of *L.mauritii* using different wastes during the experimental period.

4.10 Changes in temperature of compost derived from different type of wastes using *L.maruitii*.

4.11 Moisture content level of compost derived from different type of wastes using *L.maruitii*.

4.12 Electrical conductivity profiles of *L.mauritii* using different wastes during the experimental period.

4.13 Organic carbon contents (%) of *L.mauritii* using different wastes during the experimental period.

4.14 Nitrogen content (%) of *L.mauritii* using different wastes during the experimental period.

4.15 Total calcium levels of compost derived from different type of wastes using *L.maruitii*.

4.16 Total magnesium levels of compost derived from different type of wastes using *L.maruitii*.

4.17 Total sodium levels of compost derived from different type of wastes using *L.maruitii*.

4.18 Total sulphur levels of compost derived from different type of wastes using *L.maruitii*.
4.19 Phosphorous content (%) of *L. mauritii* using different wastes during the experimental period.

4.20 Potassium content (%) of *L. mauritii* using different wastes during the experimental period.

4.21 pH profiles of different wastes during the experimental period of vermicomposting.

4.22 Electrical conductivity profiles of different wastes during the experimental period of vermicomposting.

4.23 Nitrogen content (N %) of different wastes during the experimental period of vermicomposting.

4.24 Organic carbon content (C %) of different wastes during the experimental period of vermicomposting.

4.25 Phosphorous levels (P %) of different wastes during the experimental period of vermicomposting.

4.26 Potassium levels (K %) of different wastes during the experimental period of vermicomposting.

4.27 Microbial population in three different vermicompost treatments

4.28 Comparative study on growth rate of different species of earthworm in terms of length (cm) during the experimental period (*LM*-*L. mauritii*, *EE*-*E. eugeniae* and *EF*-*E. foetida*)

4.29 Comparative study on growth rate of different species of earthworm in terms of weight (gm) during the experimental period (*LM*-*L. mauritii*, *EE*-*E. eugeniae* and *EF*-*E. foetida*)

4.30 Extent of cadmium reduction in experimental vermicomposts using *L. mauritii*.

4.31 Extent of reduction of arsenic contents in experimental vermicomposts using *L. mauritii*.

4.32 Extent of reduction in copper content indifferent vermicompost treatments by *L. mauritii*.
4.33 Extent of reduction of iron levels by *L. mauriti* in different vermicompost treatments.

4.34 Extent of reduction in lead levels by *L. mauriti* in different vermicompost treatments.

4.35 Extent of reduction in zinc contents by *L. mauriti* in different vermicompost treatments.

4.36 Effect of vermcomposts derived from different wastes on plant height during the experimental period.

4.37 Effect of vermcomposts derived from different wastes on plant growth in terms of leaf numbers during the experimental period.

4.38 Effect of vermcomposts derived from different wastes on plant growth in terms of branch numbers during the experimental period.

4.39 Effect of vermcomposts derived from different wastes on plant growth in terms of total fruit yield (number of fruits) during the experimental period (10 days).

4.40 Effect of vermcomposts derived from different wastes on plant growth in terms of fruit weight (g) during the experimental period.

4.41 Effect of vermcomposts derived from different wastes on plant growth in terms of fruit length (cm) during the experimental period.

4.42 Evaluation of vermcompost for its field applications

4.43 Estimation of chlorophyll content (mg/g) during the experimental period of using various vermcomposts to facilitate plant growth.

4.44 Estimation of protein content (g) during the experimental period.

4.45 Estimation of carbohydrate content (g) during the experimental period.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>HS</td>
<td>Humic Substances</td>
</tr>
<tr>
<td>HA</td>
<td>Humic acid</td>
</tr>
<tr>
<td>PLFA</td>
<td>Phospholipid fatty acid</td>
</tr>
<tr>
<td>MSWV</td>
<td>Municipal Solid Waste Volume</td>
</tr>
<tr>
<td>RDF</td>
<td>Refuse Derived Fuel</td>
</tr>
<tr>
<td>ERI</td>
<td>Entomology Research Institute</td>
</tr>
<tr>
<td>CERD</td>
<td>Center for Environmental Research and Development</td>
</tr>
<tr>
<td>MC</td>
<td>Moisture Content</td>
</tr>
<tr>
<td>EC</td>
<td>Electrical Conductivity</td>
</tr>
<tr>
<td>OC</td>
<td>Organic Carbon</td>
</tr>
<tr>
<td>OWM</td>
<td>Organic Waste Management</td>
</tr>
<tr>
<td>TN</td>
<td>Total Nitrogen</td>
</tr>
<tr>
<td>TP</td>
<td>Total Phosphorus</td>
</tr>
<tr>
<td>TK</td>
<td>Total Potassium</td>
</tr>
<tr>
<td>DTPA</td>
<td>Diethylenetriaminepentaacetic acid</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethanolamine</td>
</tr>
<tr>
<td>SDA</td>
<td>Sabouraud Dextrose Agar</td>
</tr>
<tr>
<td>NA</td>
<td>Nutrient Agar</td>
</tr>
<tr>
<td>AA</td>
<td>Actinomycetes Agar</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony Forming Unit</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulphoxide</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package For Social Sciences</td>
</tr>
<tr>
<td>ANOVA</td>
<td>One way Analysis Of Variance</td>
</tr>
<tr>
<td>CMDA</td>
<td>Chennai Metropolitan Development Authority</td>
</tr>
</tbody>
</table>