<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Figure Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 1.1:</td>
<td>Schematic representation of different types of sensors</td>
<td>4</td>
</tr>
<tr>
<td>Fig 1.2:</td>
<td>Schematic diagram of a fluorescence sensor</td>
<td>5</td>
</tr>
<tr>
<td>Fig 1.3:</td>
<td>Jablonski diagram showing the different radiative and non-radiative processes related with photoluminescence spectroscopy</td>
<td>6</td>
</tr>
<tr>
<td>Fig 1.4:</td>
<td>Schematic diagram of PET mechanism</td>
<td>14</td>
</tr>
<tr>
<td>Fig 1.5:</td>
<td>Schematic diagram of an exciplex</td>
<td>15</td>
</tr>
<tr>
<td>Fig 1.6:</td>
<td>Schematic diagram of a FRET mechanism</td>
<td>16</td>
</tr>
<tr>
<td>Fig 1.7:</td>
<td>Schematic diagram of ICT mechanism</td>
<td>16</td>
</tr>
<tr>
<td>Fig 1.8:</td>
<td>Schematic diagram of the two types of ICT mechanisms</td>
<td>17</td>
</tr>
<tr>
<td>Fig 1.9:</td>
<td>Schematic diagram of ESIPT mechanism</td>
<td>18</td>
</tr>
<tr>
<td>Fig 1.10:</td>
<td>Schematic diagram of different potentiometric curves</td>
<td>23</td>
</tr>
<tr>
<td>Fig 1.11:</td>
<td>Schematic diagram of a voltammetric curve (left) and a cyclic voltammogram(right)</td>
<td>24</td>
</tr>
<tr>
<td>Fig 1.12:</td>
<td>Schematic diagram of a conductometric plot</td>
<td>24</td>
</tr>
<tr>
<td>Fig 1.13:</td>
<td>Schematic diagram of different logic gates</td>
<td>27</td>
</tr>
<tr>
<td>Fig 2.1:</td>
<td>Schematic diagram of a FTIR spectrometer</td>
<td>32</td>
</tr>
<tr>
<td>Fig 2.2:</td>
<td>Spinning motion of a nucleus in a magnetic field</td>
<td>34</td>
</tr>
<tr>
<td>Fig 2.3:</td>
<td>Schematic diagram of an NMR spectroscopy</td>
<td>37</td>
</tr>
<tr>
<td>Fig 2.4:</td>
<td>Schematic diagram of a mass spectrometer along with a mass spectrogram</td>
<td>39</td>
</tr>
<tr>
<td>Fig 2.5:</td>
<td>Schematic diagram of fluorescence spectrophotometer</td>
<td>42</td>
</tr>
</tbody>
</table>
Fig 2.6: Schematic diagram of a UV-visible spectrophotometer

Fig 2.7: Plot showing the potential excitation function of a cyclic voltammogram

Fig 2.8: Schematic diagram of a Cyclic voltammogram showing current vs potential plot

Fig 2.9: Graphical representation of square wave potential sweep

Fig 2.10: Schematic diagram of an electrochemical cell

Fig 3.1: FTIR spectrum of L1 in KBr pellets

Fig 3.2: 1H NMR spectrum of L1

Fig 3.3: Fluorescence spectrum of L1 in 1:1 (v/v) CH3OH:H2O at λ_{max} 495nm

Fig 3.4: UV-Visible spectrum of L1 in 1:1(v/v) CH3OH:H2O

Fig 3.5: Fluorescence spectra of L1 in 1:1 (v/v) CH3OH:H2O at different added concentrations of Al³⁺

Fig 3.6: I/I_o values of L1 in 1:1 (v/v) CH3OH:H2O against different concentrations of Al³⁺

Fig 3.7: Fluorescence spectra of L1 in 1:1 (v/v)CH3OH:H2O when 100µL of different metal salts were added to it

Fig 3.8: Bar diagram showing I/I_o values for L1 in presence of different metal ions

Fig 3.9: Plot of log[(I₀-I_s)/(I_s-I_{max})] versus log[Al³⁺] of L1 in 1:1 (v/v) CH3OH:H2O

Fig 3.10: Detection limit of L1 in 1:1 (v/v)CH3OH:H2O, plotting (I_p-I_o) versus log[Al³⁺]

ii
Fig 3.11: UV-Visible spectra of \(L1 \) in 1:1 (\(v/v \)) CH\(_3\)OH: H\(_2\)O upon titration at different concentrations of Al\(^{3+} \)

Fig 3.12: Plot of \(\log[(A_o-A_s)/(A_s-A_\infty)] \) versus \(\log[\text{Al}^{3+}] \) for \(L1 \) in 1:1 (\(v/v \)) CH\(_3\)OH:H\(_2\)O

Fig 3.13: Interference study of \(L1 \) in presence of one equivalent of Al\(^{3+} \) and different metal ions

Fig 3.14: DFT Optimised structure of \(L1 \)

Fig 3.15: DFT Optimised structure of the \(L1:Al^{3+} \) complex.

Fig 3.16: Shapes of the molecular orbitals of HOMO and LUMO+1

Fig 4.1: FTIR spectrum of \(L2 \) in KBr

Fig 4.2: \(^1\)H NMR spectrum of \(L2 \) in CDCl\(_3\)

Fig 4.3: \(^{13}\)C NMR spectrum of \(L2 \) in CDCl\(_3\)

Fig 4.4: Fluorescence spectrum of \(L2 \) in 1:1 (\(v/v \)) CH\(_3\)CN:H\(_2\)O

Fig 4.5: UV-visible spectrum of \(L2 \) in 1:1 (\(v/v \)) CH\(_3\)CN:H\(_2\)O

Fig 4.6: Cyclic voltammogram of \(L2 \) in 1:1 (\(v/v \)) CH\(_3\)CN:H\(_2\)O. WE: Platinum disc, RE:Ag/AgCl

Fig 4.7: Square wave voltammogram of \(L2 \) with WE: Platinum disc, RE: Ag/AgCl

Fig 4.8: Fluorescence spectra of \(L2 \) in 1:1 (\(v/v \)) CH\(_3\)CN:H\(_2\)O at different added concentrations of Zn\(^{2+} \)

Fig 4.9: Plot of \(I/I_o \) of \(L2 \) versus [Zn\(^{2+} \)] in 1:1 (\(v/v \)) CH\(_3\)CN:H\(_2\)O

Fig 4.10: Fluorescent spectra of \(L2 \) in presence of one equivalent of different metal ions in 1:1 (\(v/v \)) CH\(_3\)CN:H\(_2\)O
Fig 4.11: I/I₀ values of L₂ in 1:1(v/v) CH₃CN:H₂O in presence of one equivalent of different metal ions

Fig 4.12: Detection limit of L₂ where Plot of (Iᵣ - I₀) against log[Zn²⁺] for the determination of detection limit

Fig 4.13: Plot of log [(I₀-Iᵣ)/(I₀-Iₘ₅₅)] versus log[Zn²⁺] for L₂ in 1:1(v/v) CH₃CN:H₂O

Fig 4.14: UV-Visible spectra of L₂ in 1:1 (v/v) CH₃CN:H₂O at different added concentrations of Zn²⁺

Fig 4.15: Plot of log[(Aᵥ(Aᵥₐ-Aᵥₐ))/Aₐₐₐ] versus log[Zn²⁺]

Fig 4.16: Bar diagram showing the I/I₀ values of L₂ in presence of one equivalent of Zn²⁺ (black bars) and one equivalent of Zn²⁺ along with one equivalent of other metal ions (blue bars)

Fig 4.17: Job’s plot to confirm 1:1 interaction between L₂ and Zn²⁺. The maximum point at 0.5 confirms the 1:1 interaction

Fig 4.18: Cyclic voltammogram response of L₂ in presence and absence of Zn²⁺. WE=Pt disc, RE=Ag/AgCl in 1:1(v/v) CH₃CN:H₂O

Fig 4.19: Square wave voltammogram response in presence and absence of Zn²⁺ with WE=Platinum disc, RE=Ag/AgCl

Fig 4.20: DFT optimized structure of L₂ (a) and Zn²⁺ complex of L₂ (b) at B3LYP/6–311++G(d,p) level of theory

Fig 4.21: Shape of the different molecular orbitals involved in the transition

Fig 4.22: Effect of I/I₀ versus [Zn²⁺] in a medium of aqueous bovine serum albumin in 1:1 (v/v) CH₃OH:H₂O

Fig 5.1: FTIR spectrum of L₃ in KBr pellet

Fig 5.2:¹H NMR spectrum of L₃
Fig 5.3: 13C NMR spectrum of L3

Fig 5.4: Fluorescence spectrum of L3 in 2:1 (v/v) CH$_3$OH:H$_2$O at $\lambda_{max}=425.5\text{nm}$ when excited with 350nm photons

Fig 5.5: UV-visible spectrum of L3 in 2:1 (v/v) CH$_3$OH:H$_2$O

Fig 5.6: Cyclic voltammogram of L3 in 2:1 (v/v) CH$_3$OH:H$_2$O with WE: Platinum and RE:Ag/AgCl

Fig 5.7: Square wave voltammogram of L3 in 2:1 (v/v) CH$_3$OH:H$_2$O with WE: Platinum and RE:Ag/AgCl

Fig 5.8: Fluorescence spectra of L3 in 2:1 (v/v) CH$_3$OH:H$_2$O at different added concentrations of Cu$^{2+}$

Fig 5.9: Plot of I/I$_0$ at different added concentrations of Cu$^{2+}$ in 2:1 (v/v) CH$_3$OH:H$_2$O

Fig 5.10: Fluorescence spectra of L3 in 2:1 (v/v) CH$_3$OH:H$_2$O titration with one equivalent of different metal ions

Fig 5.11: Bar diagram showing the I/I$_0$ values of L3 upon interaction with different metal ions

Fig 5.12: Benesi-Hildebrand plot where I/I$_0$ versus [Cu$^{2+}$]n is plotted to confirm the binding of 2L3:Cu$^{2+}$

Fig 5.13: Stern volmer plot of I/I$_0$ versus [Cu$^{2+}$]n

Fig 5.14: Plot of I$_s$I$_0$ versus log [Cu$^{2+}$] for the determination of detection limit of L3 towards Cu$^{2+}$ in 2:1 (v/v) CH$_3$OH:H$_2$O

Fig 5.15: UV-visible spectra of L3 upon titration with different added concentrations of Cu$^{2+}$

Fig 5.16: UV-visible spectrum of 2L3:Cu$^{2+}$ in 2:1 (v/v) CH$_3$OH:H$_2$O.
Fig 5.17: Plot of I/I_o in presence of $\text{L}_3+\text{Cu}^{2+}$ (black bars) and $\text{L}_3+\text{Cu}^{2+}$ Metal ions (blue bars) 110

Fig 5.18: Cyclic voltammogram study of L_3 at different scan rates with WE: platinum, RE: Ag/AgCl 111

Fig 5.19: Cyclic voltammogram response of L_3 in 2:1 CH$_3$OH:H$_2$O (v/v) (black) and one equivalent of Cu$^{2+}$ (blue) 112

Fig 5.20: Plot of cathodic current of L_3 against different added concentrations of Cu$^{2+}$. 112

Fig 5.21: Square wave voltammogram response of L_3 in 2:1 CH$_3$OH:H$_2$O (v/v) (black) and one equivalent of Cu$^{2+}$ (blue) 114

Fig 5.22: Reversible fluorescent“off” (due to Cu$^{2+}$) and “on” (due to EDTA$^{2-}$) state for L_3 115

Fig 5.23: Optimised structure of L_3(left) and 2L_3:Cu$^{2+}$ complex (Right). 115

Fig 5.24: HOMO of L_3 and complex (β) 115

Fig 5.25: LUMO of L_3 and complex (β) 116

Fig 6.1: FTIR spectrum of L_4 in KBr pellets 122

Fig 6.2: 1H NMR spectrum of L_4 in DMSO-d$_6$ at 300MHz 123

Fig 6.3: 13C NMR of L_4 in DMSO-d$_6$ at 75MHz 123

Fig 6.4: HRMS spectrum of L_4 in CH$_3$OH 124

Fig 6.5: Fluorescence spectrum of L_4 in 1:1(v/v) CH$_3$OH:H$_2$O at 350nm 125

Fig 6.6: UV-Visible spectrum of L_4 in 1:1 (v/v) CH$_3$OH:H$_2$O 126

Fig 6.7: Fluorescence spectra of L_4 in 1:1 (v/v) CH$_3$OH: H$_2$O at λ_{max} 517nm upon titration with different concentrations of Al$^{3+}$ 128

Fig 6.8: Plot showing I/I_o as a function of [Al$^{3+}$] in 1:1(v/v) CH$_3$OH:H$_2$O 129
Fig 6.9: Fluorescence spectra of L4 in presence of one equivalent of different metal ions in 1:1 (v/v) CH3OH:H2O

Fig 6.10: Bar diagram representing the I/I_o values of one equivalent of different metal ions on the fluorescence intensity of L4 in 1:1 (v/v) CH3OH:H2O

Fig 6.11: Plot of log[(I_o-I_s)/(I_s-I_max)] vs log[Al^{3+}] for L4 in 1:1 (v/v) CH3OH:H2O at λ_exc=350nm

Fig 6.12: Plot of (I_s–I_o) versus log[Al^{3+}] in 1:1 (v/v) CH3OH:H2O

Fig 6.13: Plot of I/I_o on the fluorescence intensity of L4 upon titration with one equivalent of Al^{3+} (represented by black bars) and Al^{3+} along with two equivalents of other metal ions (blue bars) in 1:1 (v/v) CH3OH:H2O

Fig 6.14: Change in absorbance of L4 in 1:1 (v/v) CH3OH:H2O at different added concentrations of Al^{3+}

Fig 6.15: Effect of one equivalent of different metal ions on L4 in 1:1 (v/v) CH3OH:H2O under the UV lamp

Fig 6.16: Mechanism of fluorescence change in its signal upon interaction of L4 with Al^{3+}

Fig 6.17: Change in fluorescence intensity of L4 in 1:1 (v/v) CH3OH: H2O with pH in absence (△) and presence (□) of Al^{3+}

Fig 6.18: Effect of fluorescence intensity on L4 in presence of one equivalent of Al^{3+} due to titration with EDTA^{2-} anion

Fig 6.19: Job’s plot showing the absorbance of L4 against the mole fraction of [Al^{3+}]

vii
Fig 6.20: Change in the binding mode of L4 and its interaction with one equivalent of Al$^{3+}$

Fig 6.21: Optimised structure of (a) L4 and (b) L4 and Al$^{3+}$

Fig 6.22: DFT optimised shapes of the HOMO and LUMO of L4, HOMO and LUMO of L4:Al$^{3+}$ HOMO-1 and LUMO+1 of L4:Al$^{3+}$

Fig 6.23: Fluorescence microscope images of (A) only L6 rat myoblasts cells (B) L6 rat myoblasts cells upon addition of Al$^{3+}$ (C) L6 rat myoblasts cells only in presence of L4 (D) L6 rat myoblasts cells in presence of L4 and Al$^{3+}$

Fig 6.24: Cytotoxicity plot of L4

Fig 6.25: Left: The L4 coated paper strip under UV lamp after interacted with Al$^{3+}$; Right: L4 coated paper strip under UV lamp without any interaction with Al$^{3+}$

Fig 7.1: FTIR spectrum of L5

Fig 7.2: 1H NMR spectrum of L5

Fig 7.3: 13C NMR spectrum of L5 in CDCl$_3$

Fig 7.4: LCMS-MS spectrum of L5

Fig 7.5: Fluorescence spectrum of L5 in 1:1 (v/v) CH$_3$OH:H$_2$O at $\lambda_{exc}=350$nm with the peak at λ_{max} 530nm

Fig 7.6: UV-visible spectrum of L5 in 1:1 (v/v) CH$_3$OH:H$_2$O

Fig 7.7: Cyclic voltammogram of L5 in 1:1 (v/v) CH$_3$OH:H$_2$O at Scan Rate 0.1Vs$^{-1}$. WE – glassy carbon, RE- Ag/AgCl.

Fig 7.8: Square wave voltammogram of L5. WE- glassy carbon, RE- Ag/AgCl
Fig 7.9: Fluorescent spectra of \textbf{L5} in 1:1 (v/v) CH$_3$OH: H$_2$O at different added concentrations of metal cations.

Fig 7.10: Plot of I/I$_0$ on the fluorescence intensity of \textbf{L5} at different concentrations of Al$^{3+}$.

Fig 7.11: Change in fluorescent intensity of \textbf{L5} in 1:1 (v/v) CH$_3$OH: H$_2$O on addition of one equivalent of different metal cations.

Fig 7.12: Bar diagram representing I/I$_0$ values on the fluorescence intensity of \textbf{L5} of different metal cations.

Fig 7.13: Plot of (I$_s$-I$_o$) against log [Al$^{3+}$] to determine the detection limit of \textbf{L5}.

Fig 7.14: Plot of log[(I$_0$-I$_o$)/(I$_s$-I$_{max}$)] against log [Al$^{3+}$] and the slope was found to be 1.3.

Fig 7.15: Interference plot showing I/I$_0$ values on \textbf{L5} in 1:1 (v/v)CH$_3$OH:H$_2$O versus one equivalent of Al$^{3+}$ along with the addition of two equivalents of other metal cations.

Fig 7.16: Change in absorbance of \textbf{L5} on addition of different concentrations of Al$^{3+}$.

Fig 7.17: Visual changes observed on addition of one equivalent of different metal cations when observed under UV lamp.

Fig 7.18: Cyclic voltammogram change of \textbf{L5} in 1:1 (v/v) CH$_3$OH: H$_2$O on addition of 100µL of Al$^{3+}$. WE- glassy carbon, RE- Ag/AgCl.

Fig 7.19: Square wave voltammogram response of \textbf{L5} in 1:1 (v/v) CH$_3$OH: H$_2$O on addition of 100µL of Al$^{3+}$. W.E- Glassy Carbon, RE- Ag/AgCl.

Fig 7.20: Pictorial representation of PET mechanism showing the interaction of \textbf{L5} with Al$^{3+}$.
Fig 7.21: Changes in fluorescence intensity of L5 in 1:1 (v/v) CH$_3$OH: H$_2$O due to pH change from 2 to 10

Fig 7.22: Effect of reversibility of L5 in 1:1 (v/v) CH$_3$OH:H$_2$O on titration with Na$_2$EDTA

Fig 7.23: Job’s plot showing the fluorescence intensity of L5 in 1:1 (v/v) CH$_3$OH: H$_2$O against the molar fraction of Al$^{3+}$

Fig 7.24: Binding mode of L5:Al$^{3+}$ (one equivalent) in CDCl$_3$

Fig 7.25: DFT optimised structure of (a) L5 and (b) L5:Al$^{3+}$

Fig 7.26: Shapes of (a) HOMO and (b) LUMO of L5

Fig 7.27: Shapes of (a) HOMO and (b) LUMO of L5:Al$^{3+}$

Fig 7.28: Fluorescence microscope imaging of (A) only L6 rat myoblasts cells (B) L6 rat myoblasts cells upon addition of L5 (C) L6 rat myoblasts cells only in presence

Fig 7.29: Paper strips observed under UV lamp (A) presence of L5 and Al$^{3+}$ (left) and (B) in presence of only L5 (right)